| 注册
首页|期刊导航|岩土工程学报|基于ST-CNN的脉冲型地震动与脉冲周期融合识别方法

基于ST-CNN的脉冲型地震动与脉冲周期融合识别方法

禹海涛 朱晨阳 傅大宝 许乃星 卢哲超 蔡辉腾

岩土工程学报2024,Vol.46Issue(12):2675-2683,9.
岩土工程学报2024,Vol.46Issue(12):2675-2683,9.DOI:10.11779/CJGE20230766

基于ST-CNN的脉冲型地震动与脉冲周期融合识别方法

A hybrid method to identify pulse-like ground motions and pulse periods based on ST-CNN

禹海涛 1朱晨阳 2傅大宝 3许乃星 3卢哲超 3蔡辉腾4

作者信息

  • 1. 同济大学土木工程防灾减灾全国重点实验室,上海 200092||同济大学土木工程学院地下建筑与工程系,上海 200092
  • 2. 同济大学土木工程学院地下建筑与工程系,上海 200092||福州市可持续发展城市研究院有限公司,福建 福州 350100
  • 3. 福州市可持续发展城市研究院有限公司,福建 福州 350100
  • 4. 福建省地震局,福建 福州 350003
  • 折叠

摘要

Abstract

The rapid and precise identification of the pulse-like ground motions is a key challenge that perplexes both the academic and engineering communities.The quantitative identification methods can overcome the empirical limitations of manual identification.However,the traditional quantitative identification methods suffer from inconsistencies in the identified results,limited applicability,and difficulties in simultaneously determining the accurate pulse periods.In response,a problem-targeted fusion learning rule is established,combined with a convolutional neural network(CNN)model,to develop a novel method to synchronously identify pulse-like ground motions and their pulse periods.This learning rule integrates multiple traditional typical identification methods based on different identification principles,thereby eliminating the cumbersome manual labeling process.It employs 30000 ground motion data from arbitrary directions worldwide for training and validation,resulting in three problem-targeted CNN models named the Strict,General,and TP identification models.To address the issue of insufficient temporal input information for ground motions leading to weak model generalization capability,the input structure of the CNN model is optimized,and the ST-CNN model is proposed,incorporating the S-transform layer to convert ground motion time series to time frequency,thereby enhancing frequency domain distribution information and further improving the identification accuracy.The results indicate that the Strict model can strictly differentiate between the pulse-like and non-pulse-like ground motions,with the results consistent with those of other methods.The General model can identify more pulse-like ground motions and has broader applicability.The TP model accurately identifies pulse periods and can be used in conjunction with the aforementioned models to synchronously output the identified results.The proposed problem-targeted fusion learning rule can also be extended to other engineering fields and other machine learning models,and the established identification method can provide scientific guidance for the study on the pulse-like ground motions.

关键词

脉冲型地震动/脉冲周期/识别方法/卷积神经网络/S变换

Key words

pulse-like ground motion/pulse period/identification method/convolutional neural network/S-transform

分类

建筑与水利

引用本文复制引用

禹海涛,朱晨阳,傅大宝,许乃星,卢哲超,蔡辉腾..基于ST-CNN的脉冲型地震动与脉冲周期融合识别方法[J].岩土工程学报,2024,46(12):2675-2683,9.

基金项目

国家重点研发计划项目(2022YFE0128400) (2022YFE0128400)

国家自然科学基金面上项目(42177134) (42177134)

中央高校基本科研业务费专项资金项目 ()

岩土工程学报

OA北大核心CSTPCD

1000-4548

访问量0
|
下载量0
段落导航相关论文