Ultra‑High Sensitivity Anisotropic Piezoelectric Sensors for Structural Health Monitoring and Robotic PerceptionOA
Monitoring minuscule mechanical signals,both in magnitude and direction,is imperative in many application scenarios,e.g.,structural health monitoring and robotic sensing systems.However,the piezoelectric sensor struggles to satisfy the requirements for directional recognition due to the limited piezoelectric coefficient matrix,and achieving sensitivity for detecting micrometer-scale deformations is also challenging.Herein,we develop a vector sensor composed of lead zirconate titanate-electronic grade glass fiber composite filaments with oriented arrangement,capable of detecting minute anisotropic deformations.The as-prepared vector sensor can identify the deformation directions even when subjected to an unprecedented nominal strain of 0.06%,thereby enabling its utility in accurately discerning the 5μm-height wrinkles in thin films and in monitoring human pulse waves.The ultra-high sensitivity is attributed to the formation of porous ferroelectret and the efficient load transfer efficiency of continuous lead zirconate titanate phase.Additionally,when integrated with machine learning techniques,the sensor’s capability to recognize multi-signals enables it to differentiate between 10 types of fine textures with 100%accuracy.The structural design in piezoelectric devices enables a more comprehensive perception of mechanical stimuli,offering a novel perspective for enhancing recognition accuracy.
Hao Yin;Yanting Li;Zhiying Tian;Qichao Li;Chenhui Jiang;Enfu Liang;Yiping Guo
State Key Laboratory of Metal Matrix Composites,School of Materials Science and Engineering,Shanghai Jiao Tong University,Shanghai 200240,People’s Republic of ChinaState Key Laboratory of Metal Matrix Composites,School of Materials Science and Engineering,Shanghai Jiao Tong University,Shanghai 200240,People’s Republic of ChinaBeijing Vacuum Electronics Research Institute,Beijing 100015,People’s Republic of ChinaState Key Laboratory of Metal Matrix Composites,School of Materials Science and Engineering,Shanghai Jiao Tong University,Shanghai 200240,People’s Republic of ChinaState Key Laboratory of Metal Matrix Composites,School of Materials Science and Engineering,Shanghai Jiao Tong University,Shanghai 200240,People’s Republic of ChinaFundamental Science On Vibration,Shock and Noise Laboratory,State Key Laboratory of Mechanical System and Vibration,School of Mechanical Engineering,Shanghai Jiao Tong University,Shanghai 200240,People’s Republic of ChinaState Key Laboratory of Metal Matrix Composites,School of Materials Science and Engineering,Shanghai Jiao Tong University,Shanghai 200240,People’s Republic of China
计算机与自动化
Flexible piezoelectric filamentsAnisotropicUltra-high sensitivityStructural health detectionTexture recognition
《Nano-Micro Letters》 2025 (2)
P.432-446,15
financially supported by the National Key Research and Development Program of China(No.2022YFA1205300 and No.2022YFA1205304)the Oceanic Interdisciplinary Program of Shanghai Jiao Tong University(SL2022ZD103).
评论