| 注册
首页|期刊导航|重庆理工大学学报|改进YOLOv7的道路多目标检测算法

改进YOLOv7的道路多目标检测算法

张琦 张赛军 周广生 谢豪

重庆理工大学学报2024,Vol.38Issue(21):27-34,8.
重庆理工大学学报2024,Vol.38Issue(21):27-34,8.DOI:10.3969/j.issn.1674-8425(z).2024.11.004

改进YOLOv7的道路多目标检测算法

Improved YOLOv7 object detection algorithm for multiple road targets

张琦 1张赛军 1周广生 1谢豪1

作者信息

  • 1. 华南理工大学机械与汽车工程学院,广州 510640
  • 折叠

摘要

Abstract

The perception of road environment is an important component of autonomous driving tasks.To overcome the difficulties in detecting small targets,inconsistent detection target sizes,and occlusion of detection targets in road environment perception,we propose a deep learning enhancement method to improve target detection performance.First,the Bottleneck-ELAN module is developed as the backbone to enhance the model's feature extraction capability.The Gather-and-Distribute(GD)mechanism are also employed to achieve cross-scale fusion between feature maps,addressing the issue of information loss during feature fusion across different scales.Then,a combination of the Complete-IoU(CIoU)and Normalized Wasserstein Distance(NWD)loss functions is employed to address the inconsistency in sensitivity to object displacement and the smoothness disparity present in the single IoU loss function.Our experiment shows the average accuracy of the improved model on the BDD100K dataset reaches 43.4%,3.1%higher than that of the original YOLOv7 algorithm.Moreover,the accuracy of small object detection improves even more markedly,up by 10%.

关键词

计算机视觉/目标检测/深度学习/YOLOv7算法

Key words

computer vision/object detection/deep learning/YOLOv7 algorithm

分类

信息技术与安全科学

引用本文复制引用

张琦,张赛军,周广生,谢豪..改进YOLOv7的道路多目标检测算法[J].重庆理工大学学报,2024,38(21):27-34,8.

基金项目

广东省重点领域研发项目(2020B010184002) (2020B010184002)

重庆理工大学学报

OA北大核心

1674-8425

访问量1
|
下载量0
段落导航相关论文