| 注册
首页|期刊导航|重庆理工大学学报|轻量级车辆行人检测模型研究及Android部署

轻量级车辆行人检测模型研究及Android部署

王道斌 李宸翔 严运兵

重庆理工大学学报2024,Vol.38Issue(21):35-42,8.
重庆理工大学学报2024,Vol.38Issue(21):35-42,8.DOI:10.3969/j.issn.1674-8425(z).2024.11.005

轻量级车辆行人检测模型研究及Android部署

Research on lightweight vehicle pedestrian detection model and Android deployment

王道斌 1李宸翔 1严运兵1

作者信息

  • 1. 武汉科技大学汽车与交通工程学院,武汉 430065
  • 折叠

摘要

Abstract

Object detection models usually have a large number of parameters,making them inapplicable on mobile devices.Against this backdrop,we propose a lightweight vehicle and pedestrian detection model,YOLOv8-TI(Traffic Information).A novel lightweight parameter-sharing SPG Detect detection head is designed to reduce the model's parameters and computational load.The Global Balanced Channel Path Aggregation Network(GBC-PAN)structure is proposed to balance the number of network channels and achieve bidirectional feature fusion from top-down and bottom-up directions through weighted connections across scales.Meanwhile,a dynamic non-monotonic focusing mechanism,represented by the Wise Loss function,is introduced to enhance the accuracy of predicted bounding boxes.Our experimental results reveal the YOLOv8-TI model maintains a high accuracy rate while reducing the parameters,flops,and model volume by 52.1%,58.0%and 54%respectively compared with those of YOLOv8n.A comparative analysis with other lightweight object detection algorithms verifies the effectiveness and superiority of our method.YOLOv8-TI is put on Android mobile devices and tested on Honor 20 fps and Honor 80GT,achieving frame rates of 24 and 31 FPS respectively,meeting real-time requirements.It is set to accomplish traffic information detection tasks when applied on autonomous driving vehicles.

关键词

深度学习/车辆行人检测/参数共享/轻量化

Key words

deep learning/car and pedestrian detection/sharing Parameter/light weight

分类

交通工程

引用本文复制引用

王道斌,李宸翔,严运兵..轻量级车辆行人检测模型研究及Android部署[J].重庆理工大学学报,2024,38(21):35-42,8.

基金项目

国家自然科学基金项目(51975428) (51975428)

重庆理工大学学报

OA北大核心

1674-8425

访问量0
|
下载量0
段落导航相关论文