| 注册
首页|期刊导航|重庆理工大学学报|特征图组合的双流CNN手指关节角度连续运动预测方法研究

特征图组合的双流CNN手指关节角度连续运动预测方法研究

武岩 曹崇莉 李奇 姬鹏辉 张航

重庆理工大学学报2024,Vol.38Issue(21):119-128,10.
重庆理工大学学报2024,Vol.38Issue(21):119-128,10.DOI:10.3969/j.issn.1674-8425(z).2024.11.015

特征图组合的双流CNN手指关节角度连续运动预测方法研究

Research on the continuous motion prediction method of finger joint angles using dual-stream CNN based on feature map combination

武岩 1曹崇莉 2李奇 1姬鹏辉 2张航2

作者信息

  • 1. 长春理工大学计算机科学技术学院,长春 130022||长春理工大学中山研究院,广东中山 528400
  • 2. 长春理工大学计算机科学技术学院,长春 130022
  • 折叠

摘要

Abstract

To address the insufficient extraction of timing information and low accuracy in predicting continuous motion of finger joint angles based on surface electromyographic(sEMG)signals,we propose a two-stream convolutional neural network prediction method based on feature map combination(FMC).First,the feature information of the sEMG signal is extracted.Then,the feature information is integrated into feature maps(FMC)by employing a sliding window method to express the temporal coherence of the features and extract the temporal information of the sEMG signal.Finally,the dual stream convolutional neural network(DCNN)network is used to extract deep features from the combined feature maps in the temporal and spatial dimensions to improve the prediction of finger joint angles continuous motion.Experiments are conducted on the NinaPro-DB8 dataset,and our results show,compared with three different degrees of freedom(18,5,3),the R2 values of healthy subjects increase by 7.9%,16.8%,and 17.8%respectively,while the R2 values of amputees increase by 9.6%,14.3%,and 10.3%respectively.

关键词

sEMG/连续运动预测/特征图组合/双流卷积神经网络

Key words

sEMG/continuous motion prediction/feature map combination/dual stream convolutional neural network

分类

信息技术与安全科学

引用本文复制引用

武岩,曹崇莉,李奇,姬鹏辉,张航..特征图组合的双流CNN手指关节角度连续运动预测方法研究[J].重庆理工大学学报,2024,38(21):119-128,10.

基金项目

吉林省科技发展计划国际科技合作项目(20200801035GH) (20200801035GH)

吉林省科技发展计划国际联合研究中心建设项目(20200802004GH) (20200802004GH)

重庆理工大学学报

OA北大核心

1674-8425

访问量0
|
下载量0
段落导航相关论文