| 注册
首页|期刊导航|重庆理工大学学报|多尺度非对称卷积的轻量级U2-Net医学影像语义分割模型

多尺度非对称卷积的轻量级U2-Net医学影像语义分割模型

孙水发 王清华 邹耀斌 唐庭龙 侯斌 吴义熔 崔文超

重庆理工大学学报2024,Vol.38Issue(21):138-146,9.
重庆理工大学学报2024,Vol.38Issue(21):138-146,9.DOI:10.3969/j.issn.1674-8425(z).2024.11.017

多尺度非对称卷积的轻量级U2-Net医学影像语义分割模型

Lightweight U2-Net semantic segmentation model for medical images with multiscale asymmetric convolution

孙水发 1王清华 2邹耀斌 3唐庭龙 3侯斌 3吴义熔 4崔文超3

作者信息

  • 1. 三峡大学电气与新能源学院,湖北宜昌 443002||杭州师范大学信息科学与技术学院,杭州 310036
  • 2. 三峡大学电气与新能源学院,湖北宜昌 443002
  • 3. 三峡大学计算机与信息学院,湖北宜昌 443002
  • 4. 北京师范大学人文和社会科学高等研究院,广东珠海 519087
  • 折叠

摘要

Abstract

In clinical practice,semantic segmentation of medical images plays a vital role in detecting diseases,allowing doctors to accurately determine the patients'conditions and make more targeted treatment plans.Based on the U2-Net network structure,we designed a semantic segmentation model for medical images with more efficient operation and more accurate segmentation.The number of model parameters was reduced by replacing the traditional attention mechanism with a multi-scale asymmetric convolution kernel as well as by reducing the number of layers of the original U2-Net network.By changing the connection method of the U2-Net network and using the hopping connection of the U-Net++network,the model was made to pass the feature information to maintain integrity,reduce information loss,and make the segmentation edges more accurate and continuous.Considering the imbalance of positive and negative samples and other difficulties,we designed the binary cross entropy loss function(BCE Loss)to avoid the dominance of a large number of simple negative samples in the training process,the dice loss function(Dice Loss)to excavate foreground regions,and the multiple loss function to favor the structural similarity of the two graphs.Structural similarity of the two graphs(MS-SSIM Loss),a combined loss function of the multilevel structural similarity loss function(MS-SSIM Loss),is employed to supervise network optimization.Our experimental results show our algorithm improves the F1 score by 2.6%and 1.4%over the existing state-of-the-art network model(SOTA)on the DRIVE and STARE datasets and improves the DSC metric by 2.6%on the ISIC-2018 dataset.Visualization of the segmentation results indicate the network fully extracts the sample information and improves the semantic segmentation effect in the case of smaller samples.

关键词

语义分割/医学影像/非对称卷积核/U2-Net网络

Key words

semantic segmentation/medical imaging/asymmetric convolution kernels/U2-Net network

分类

信息技术与安全科学

引用本文复制引用

孙水发,王清华,邹耀斌,唐庭龙,侯斌,吴义熔,崔文超..多尺度非对称卷积的轻量级U2-Net医学影像语义分割模型[J].重庆理工大学学报,2024,38(21):138-146,9.

基金项目

国家社会科学基金项目(20BTQ066) (20BTQ066)

重庆理工大学学报

OA北大核心

1674-8425

访问量2
|
下载量0
段落导航相关论文