| 注册
首页|期刊导航|电力建设|基于二次分解重构与多任务学习的综合能源系统多元负荷短期预测

基于二次分解重构与多任务学习的综合能源系统多元负荷短期预测

于润泽 窦震海 张志一 胡亚春 陈佳佳 尹文良

电力建设2024,Vol.45Issue(12):149-161,13.
电力建设2024,Vol.45Issue(12):149-161,13.DOI:10.12204/j.issn.1000-7229.2024.12.012

基于二次分解重构与多任务学习的综合能源系统多元负荷短期预测

Multi-Energy Load Forecasting of Integrated Energy System based on Secondary Decomposition-Reconstruction and Multi-Task Learning

于润泽 1窦震海 1张志一 1胡亚春 1陈佳佳 1尹文良1

作者信息

  • 1. 山东理工大学电气与电子工程学院,山东省淄博市 255000
  • 折叠

摘要

Abstract

In the field of integrated energy systems,the inherent variability and interconnected nature of various energy loads substantially amplify their unpredictability,posing challenges to enhancing forecast precision.This study introduces a hybrid forecasting model that utilizes quadratic decomposition reconstruction coupled with multitask learning to tackle this.Addressing the prevalent noise in load fluctuations,the model employs a quadratic decomposition strategy.The model leverages variational mode decomposition alongside an improved adaptive noise complete ensemble empirical mode decomposition,segmenting load data into distinct high,medium,and low-frequency bands.Subsequently,permutation entropy is utilized to identify low-and medium-frequency sequences,which more accurately mirror the dynamics of load changes.The model incorporates a multi-output least squares support vector regression algorithm to manage the intricate interdependencies of multiple energy loads.This algorithm excels in assimilating multi-output related data and,in conjunction with a bidirectional long short-term memory network founded on multitask learning,it forecasts the low-and medium-frequency components.Empirical simulations validate that the quadratic decomposition reconstruction approach significantly elevates the predictive accuracy of the model.Additionally,these simulations showcase the prospective benefits of employing multi-output least squares support vector regression for complex multi-element load forecasting.

关键词

综合能源系统/多元负荷预测/分解重构/多任务学习/多输出最小二乘支持向量回归

Key words

integrated energy systems/multi-energy load forecasting/decomposition-reconstruction/multi-task learning/multi-output least squares support vector regression

分类

信息技术与安全科学

引用本文复制引用

于润泽,窦震海,张志一,胡亚春,陈佳佳,尹文良..基于二次分解重构与多任务学习的综合能源系统多元负荷短期预测[J].电力建设,2024,45(12):149-161,13.

基金项目

This work is supported by the National Natural Science Foundation of China(No.52005306)and the Natural Science Foundation of Shandong Province,China(No.ZR2020QE220). 国家自然科学基金项目(52005306) (No.52005306)

山东省自然科学基金项目(ZR2020QE220). (ZR2020QE220)

电力建设

OA北大核心CSTPCD

1000-7229

访问量0
|
下载量0
段落导航相关论文