| 注册
首页|期刊导航|高电压技术|基于潮流引导神经网络的配电网贝叶斯状态估计

基于潮流引导神经网络的配电网贝叶斯状态估计

梁栋 刘啸宇 曾林 孙智卿 王守相

高电压技术2024,Vol.50Issue(11):4864-4874,11.
高电压技术2024,Vol.50Issue(11):4864-4874,11.DOI:10.13336/j.1003-6520.hve.20231189

基于潮流引导神经网络的配电网贝叶斯状态估计

Bayesian State Estimation for Distribution Networks Based on Power Flow-informed Neural Networks

梁栋 1刘啸宇 2曾林 3孙智卿 4王守相5

作者信息

  • 1. 省部共建电工装备可靠性与智能化国家重点实验室(河北工业大学),天津 300401||石家庄科林电气股份有限公司河北省智能配用电装备产业技术研究院,石家庄 050222
  • 2. 省部共建电工装备可靠性与智能化国家重点实验室(河北工业大学),天津 300401
  • 3. 康奈尔大学电气与计算机工程学院,纽约 14853
  • 4. 国网浙江省电力有限公司杭州供电公司,杭州 310000
  • 5. 教育部智能电网重点实验室(天津大学),天津 300072
  • 折叠

摘要

Abstract

Driven by the low accuracy problem of existing distribution network state estimation(SE)methods when measurements are limited,a Bayesian SE method is proposed for distribution networks based on a novel power flow-informed neural network(PFINN).Firstly,the two-dimensional Gaussian mixture probability distribution of real and reactive power injection is learned for each node using historical data;thereby,abundant samples can be obtained for neural network training by Monte Carlo sampling and power flow calculation.Then,with the goal of minimizing the SE error and power flow equation violation,a Bayesian SE model is established for distribution networks based on the PFINN.Physics loss penalty is introduced into the loss function to constrain the output to be consistent with system oper-ating constraints.Furthermore,the BOHB method is adopted to optimize the hyperparameters of the neural network,while transfer learning is introduced to adapt to changes of network topologies and on-load tap changers.Finally,test re-sults using field data and balanced/unbalanced distribution networks show that the proposed method has better estimation accuracy than the pseudo-measurement-based SE method and the Bayesian SE method without power flow informing.Meanwhile,the proposed method achieves good adaptation performance to topology and tap changes.

关键词

潮流引导/神经网络/贝叶斯状态估计/配电网/迁移学习

Key words

power flow informing/neural network/Bayesian state estimation/distribution network/transfer learning

引用本文复制引用

梁栋,刘啸宇,曾林,孙智卿,王守相..基于潮流引导神经网络的配电网贝叶斯状态估计[J].高电压技术,2024,50(11):4864-4874,11.

基金项目

河北省自然科学基金(E2021202053) (E2021202053)

天津市自然科学基金(22JCQNJC00160) (22JCQNJC00160)

河北省省级科技计划(20311801D) (20311801D)

中央引导地方科技发展资金(226Z2102G).Project supported by Natural Science Foundation of Hebei Province(E2021202053),Natural Science Foundation of Tianjin City(22JCQNJC00160),S&T Pro-gram of Hebei Province(20311801D),Central Funds Guiding the Local Science and Technology Development(226Z2102G). (226Z2102G)

高电压技术

OA北大核心CSTPCD

1003-6520

访问量0
|
下载量0
段落导航相关论文