| 注册
首页|期刊导航|计算机工程与应用|泛函映射及其在非刚性三维形状对应领域应用综述

泛函映射及其在非刚性三维形状对应领域应用综述

王宁 张丹 徐辰昊 宋美华 张建鹏 彭泉鸿

计算机工程与应用2024,Vol.60Issue(24):20-43,24.
计算机工程与应用2024,Vol.60Issue(24):20-43,24.DOI:10.3778/j.issn.1002-8331.2403-0405

泛函映射及其在非刚性三维形状对应领域应用综述

Functional Maps and Its Application in Non-Rigid 3D Shape Correspondence

王宁 1张丹 1徐辰昊 1宋美华 1张建鹏 1彭泉鸿1

作者信息

  • 1. 青海师范大学 计算机学院,西宁 810016||青海师范大学 高原科学与可持续发展研究院,西宁 810016||青海师范大学 省部共建藏语智能信息处理及应用国家重点实验室,西宁 810016
  • 折叠

摘要

Abstract

With the continuous development of 3D shape research technology,the issue of non-rigid 3D shape correspon-dence becomes increasingly important,with applications spanning multiple fields such as computer graphics,computer vision,and pattern recognition.The functional maps framework has achieved advanced results in non-rigid 3D shape cor-respondence,as it can capture complex relationships between shapes and exhibit robustness to the topological noise of non-rigid shapes.This paper first outlines the fundamental concepts and research directions of 3D shape correspondence,then it elaborates on the basic framework of functional maps.Building on this,it systematically reviews the classic works in the related field,including traditional functional maps methods and deep functional maps methods,highlighting the advantages and limitations of different approaches in addressing non-rigid shape correspondence.Subsequently,the paper introduces commonly used datasets in the field of non-rigid 3D shape correspondence,and conducts experimental compar-isons and analysis of different methods.Finally,it provides an outlook on the future development trends of non-rigid 3D shape correspondence.

关键词

非刚性三维形状/形状对应/泛函映射/拉普拉斯-贝尔特拉米算子

Key words

non-rigid 3D shape/shape correspondence/functional maps/Laplace-Beltrami operator

分类

信息技术与安全科学

引用本文复制引用

王宁,张丹,徐辰昊,宋美华,张建鹏,彭泉鸿..泛函映射及其在非刚性三维形状对应领域应用综述[J].计算机工程与应用,2024,60(24):20-43,24.

基金项目

国家自然科学基金(62102213,62262056) (62102213,62262056)

青海省自然科学青年基金(2023-ZJ-947Q) (2023-ZJ-947Q)

青海师范大学中青年科研基金(KJQN2022010). (KJQN2022010)

计算机工程与应用

OA北大核心CSTPCD

1002-8331

访问量3
|
下载量0
段落导航相关论文