基于改进矩阵胶囊神经网络交通标志识别算法OACSTPCD
Traffic Sign Recognition Algorithm Based on Improved Matrix Capsule Neural Network
交通标志识别是汽车辅助驾驶系统的重要功能.但汽车行驶过程中采集到的图像存在着运动模糊的问题,对标志识别的准确性产生了较大影响.论文针对该问题提出了一种基于改进胶囊神经网络交通标志识别方法.利用矩阵胶囊神经网络进行高低层级胶囊的混合过程,实现标志特征关联构建与特征混合,并根据分类胶囊的激活值进行交通标志的类别判断.利用孪生神经网络对用于生成初级胶囊特征的编码器进行预训练,使得各类别标志所对应的特征编码具有区分度.通过经孪生神经网络预训练的编码器进行初级胶囊的特征生成.实验结果表明,使用论文提出的改进胶囊神经网络方法能够改进矩阵胶囊神经网络收敛困难的问题.利用矩阵胶囊神经网络特征关联的特点,可提升运动模糊交通标志图像的识别准确率.
Traffic sign recognition is one of the most important functions of driving assistant system.However,the motion blur in the traffic sign images has great impact on the traffic sign recognition accuracy.A traffic sign recognition algorithm based on im-proved matrix capsule neural network is proposed to solve this problem.Matrix capsule neural network is used to mix the capsules in lower capsule layer and generate ones in higher layer.It can build the correlations among features and generate higher level features.Traffic sign category could be inferred with the help of activations of classification capsules.The encoder used to generate the feature in primary capsule will be pre-trained by siamese neural network.This process can make the feature code of traffic signs more dis-criminative.The pre-trained encoder can be used to generate the feature of primary capsule.The experiment show that with the pro-posed method the convergence difficulty of matrix capsule neural network can be relieved and improve the motion-blurred traffic sign recognition accuracy by building feature correlation.
吕秉略;奚峥皓;邵宇超
上海工程技术大学电子电气工程学院 上海 201620上海工程技术大学电子电气工程学院 上海 201620上海工程技术大学电子电气工程学院 上海 201620
计算机与自动化
机器视觉孪生神经网络胶囊神经网络交通标志
machine visionsiamese neural networkcapsule neural networktraffic sign
《计算机与数字工程》 2024 (10)
2855-2862,8
国家自然科学基金项目"面向广义宽基线立体像对的目标三维重建技术研究"(编号:61801286)资助.
评论