| 注册
首页|期刊导航|计算机与数字工程|基于注意力机制的CNN-LSTM短期负荷预测

基于注意力机制的CNN-LSTM短期负荷预测

王晓兰 张惟东 王惠中

计算机与数字工程2024,Vol.52Issue(10):3014-3018,5.
计算机与数字工程2024,Vol.52Issue(10):3014-3018,5.DOI:10.3969/j.issn.1672-9722.2024.10.028

基于注意力机制的CNN-LSTM短期负荷预测

Short-term Load Prediction by CNN-LSTM Based on Attention Mechanism

王晓兰 1张惟东 1王惠中1

作者信息

  • 1. 兰州理工大学 兰州 730050
  • 折叠

摘要

Abstract

Accurate power load forecasting is a key prerequisite for power system operation.In this paper,a new forecasting method is proposed to improve the accuracy of short-term power load forecasting.The correlation analysis between the influencing factors of four seasons and the load sequence is carried out by Spearman correlation coefficient.Combining the advantages that CNN is easy to handle high-dimensional data and can better tap into the implicit characteristics of the load sequence,and the attention mechanism can further assign weights to the input influencing factors,simulation experiments are carried out based on the main fac-tors of four seasons from the correlation analysis.The experimental results show that the combined CNN-LSTM-Attention network with feature-selective input has further improved the daily load prediction accuracy in different seasons compared with the CNN-LSTM-Attention network with full feature input and the CNN-LSTM network with full feature input.

关键词

负荷预测/相关性分析/CNN/LSTM/注意力机制

Key words

load prediction/correlation analysis/CNN/LSTM/attention mechanism

分类

信息技术与安全科学

引用本文复制引用

王晓兰,张惟东,王惠中..基于注意力机制的CNN-LSTM短期负荷预测[J].计算机与数字工程,2024,52(10):3014-3018,5.

基金项目

国家自然科学基金项目(编号:61963024)资助. (编号:61963024)

计算机与数字工程

OACSTPCD

1672-9722

访问量1
|
下载量0
段落导航相关论文