| 注册
首页|期刊导航|湿法冶金|基于DDQN优化控制及ResNet异常检测的湿法冶金设备智能控制模型研究

基于DDQN优化控制及ResNet异常检测的湿法冶金设备智能控制模型研究

赵秋锦

湿法冶金2024,Vol.43Issue(6):710-716,7.
湿法冶金2024,Vol.43Issue(6):710-716,7.DOI:10.13355/j.cnki.sfyj.2024.06.017

基于DDQN优化控制及ResNet异常检测的湿法冶金设备智能控制模型研究

Intelligent Control Model of Hydrometallurgical Equipment Based on DDQN Optimization Control and ResNet Anomaly Detection

赵秋锦1

作者信息

  • 1. 郑州职业技术学院信息工程与大数据学院,河南郑州 450010
  • 折叠

摘要

Abstract

An economic benefit optimization model for hydrometallurgical equipment control was established,and an optimization algorithm based on Double Deep Deterministic Q-Network(DDQN)model is introduced.At the same time,Residual Network is combined with residual network.ResNet's deep learning capability to realize the detection and early warning of abnormal equipment operation status.The simulation results show that the intelligent control algorithm can not only greatly improve the operating efficiency of hydrometallurgical equipment,but also enhance the stability and reliability of the system and improve the economic benefit of enterprises.

关键词

湿法冶金/设备/智能控制/DDQN/ResNet/仿真分析

Key words

hydrometallurgy/equipment/intelligent control/DDQN/ResNet/simulation analysis

分类

矿业与冶金

引用本文复制引用

赵秋锦..基于DDQN优化控制及ResNet异常检测的湿法冶金设备智能控制模型研究[J].湿法冶金,2024,43(6):710-716,7.

基金项目

河南省高等学校重点科研项目(23B520047). (23B520047)

湿法冶金

OA北大核心

1009-2617

访问量0
|
下载量0
段落导航相关论文