| 注册
首页|期刊导航|上海海洋大学学报|基于机器学习的西南印度洋深海散射层声学资源密度预测

基于机器学习的西南印度洋深海散射层声学资源密度预测

万树杰 陈新军

上海海洋大学学报2024,Vol.33Issue(6):1357-1368,12.
上海海洋大学学报2024,Vol.33Issue(6):1357-1368,12.DOI:10.12024/jsou.20231004323

基于机器学习的西南印度洋深海散射层声学资源密度预测

Prediction on acoustic resource density of deep scattering layer of the southwestern Indian Ocean based on machine learning

万树杰 1陈新军2

作者信息

  • 1. 上海海洋大学 海洋生物资源与管理学院,上海 201306
  • 2. 上海海洋大学 海洋生物资源与管理学院,上海 201306||大洋渔业资源可持续开发教育部重点实验室,上海 201306||国家远洋渔业工程技术研究中心,上海 201306||农业农村部大洋渔业开发重点实验室,上海 201306
  • 折叠

摘要

Abstract

Predicting the abundance and distribution of deep scattering layer is important to indicate the distribution of marine protected animals,important fishing grounds,and develop fishery resources into the scattering layer.This study used the Nautical Area Scattering Coefficient(NASC)as the resource density indicator of the scattering layer,and used K-means clustering and SSA-XGBoost model to predict the resource density of the scattering layer based on multiple environmental factors in the southwestern Indian Ocean.The results showed that the accuracy of the model prediction is 80.51%,the precision is 76%,and the recall is 78%.The sample data matches the high-density spatial distribution of the predicted data,and the application effect of the model is good.By predicting the density of the scattering layer in different seasons in 2011,it was found that the center of gravity in the high-density area of the scattering layer moved from southeast to northwest,with the latitude of the center of gravity being the largest in spring and the smallest in winter.The dispersion of the center of gravity in the southeast-northwest direction is greater than that in the northeast-southwest direction.This study can provide a new method for elucidating the distribution and resource variation patterns of scattering layers in larger spaces.

关键词

深海散射层/机器学习/声学资源密度/西南印度洋

Key words

deep scattering layer/machine learning/acoustic resource density/southwestern Indian Ocean

分类

农业科技

引用本文复制引用

万树杰,陈新军..基于机器学习的西南印度洋深海散射层声学资源密度预测[J].上海海洋大学学报,2024,33(6):1357-1368,12.

基金项目

国家重点研发计划(2019YFD0901401) (2019YFD0901401)

上海海洋大学学报

OA北大核心CSTPCD

1674-5566

访问量3
|
下载量0
段落导航相关论文