首页|期刊导航|天津农业科学|基于Swin Transformer和YOLOv8的玉米叶病害识别算法研究

基于Swin Transformer和YOLOv8的玉米叶病害识别算法研究OA

Research on Maize Leaf Disease Recognition Algorithm Based on Swin Transformer and YOLOv8

中文摘要英文摘要

为了提高对玉米叶病虫害的准确识别度,本文提出了一种结合Swin Transformer和YOLOv8 网络的改进算法.基于YOLOv8 网络,算法引入了Focus和Depthwise Convolution等模块,减少了计算量和参数,增加了感受野和特征通道,并提高了特征融合和传输能力.此外,算法还采用了Wise Intersection over Union(WIoU)损失函数来优化网络.结果表明,在自建的玉米叶病害数据集上,Swin Transformer-YOLO模型取得了优异的表现,准确率为 91.5%,平均精度(mAP@0.5)为 89.4%,显著优于其他检测器.与主流算法(如YOLOv8、YOLOv7、YOLOv5 和YOLOx)相比,Swin Transformer-YOLO模型在各项指标上均表现出色,特别是在准确率和平均精度方面.具体而言,Swin Transformer-YOLO模型的召回率为 77.6%,mAP@0.5∶0.95 值为 71%,F1 得分为0.84 分.综上所述,本研究为复杂环境下玉米叶病害的准确识别提供了技术手段,并为小目标检测提供了新的见解.

In order to improve the accuracy of identifying corn leaf disease pests,this paper proposed an improved algorithm that com-bines Swin Transformer and YOLOv8 network.Based on the YOLOv8 network,modules such as Focus and Depthwise Convolution were introduced to reduce computation and parameters,increase the receptive field and feature channels,and improve feature fusion and transmission capabilities.Additionally,the Wise Intersection over Union(WIoU)loss function was adopted to optimize the network.The experimental results showed that the Swin Transformer-YOLO model achieved excellent performance on the self-built corn leaf dis-ease dataset,with an accuracy of 91.5%and a mean average precision(mAP@0.5)of 89.4%,significantly outperforming other detec-tors.Compared to mainstream algorithms(such as YOLOv8,YOLOv7,YOLOv5,and YOLOx),the Swin Transformer-YOLO model ex-celled in all metrics,particularly in accuracy and mean average precision.Specifically,the Swin Transformer-YOLO model had a re-call rate of 77.6%,an mAP@0.5∶0.95 of 71%,and an F1 score of 0.84.In summary,this study provides a technical means for the ac-curate identification of corn leaf diseases in complex environments and offered new insights for small target detection.

朱雷;朱劲松

长江大学经济与管理学院,湖北荆州 434023

植物保护学

玉米叶病害识别小目标检测Swin TransformerYOLOv8模型优化

maize leaf disease recognitionsmall target detectionSwin TransformerYOLOv8model optimization

《天津农业科学》 2024 (010)

55-64 / 10

湖北省教育厅科学技术研究项目(B2021052)

10.3969/j.issn.1006-6500.2024.10.009

评论