多角度数理模拟在电容去离子中的前沿应用OA北大核心CSTPCD
Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization
随着基础理论与计算机领域的发展,诸多相对于实验方法具有明显优势的数理模拟被应用于电容去离子(Capacitive deionization,CDI)技术研究.多角度数理模拟在CDI电极离子动力学、结构-性能构效关系、工艺参数优化及经济技术性分析发挥着重要作用,有力推动了CDI电极材料开发及装置构型设计的发展.目前关于CDI领域的综述集中在CDI电极材料开发和装置构型设计,缺乏关于CDI领域的前沿模拟研究现状及进展的全面综述.本文从最早用于描述CDI动力学过程的连续尺度模型出发,系统地归纳与梳理了CDI中多角度数理模拟的分类,总结了不同数理模拟方法(连续/孔隙尺度模型、分子动力学与密度泛函理论、仿真与机器学习、技术经济性分析)的优势与缺点,并对未来发展方向进行了展望.本文是首篇关于CDI领域多角度数理模拟的前沿进展综述和展望,可为CDI研究新范式提供理论基础和研究思路.
Capacitive deionization(CDI)technology is considered to be an emerging water treatment technology in the 21st century,owing to its low energy consumption,absence of secondary pollution,and straightforward operation.The advancement of basic theory and computer science has facilitated the use of multi-angle numerical simulations for CDI.However,due to errors in experimental methods,a direct understanding of mechanisms such as the kinetic characteristics of ion diffusion inside electrode materials,structural evolution during charging and discharging,and the intrinsic connection between potentials and structures is lacking.Existing experimental methods fall short of providing clear theoretical explanations for these phenomena.In contrast,numerical simulations offer a better comprehension of the chemical and electrochemical evolution in CDI.Beyond electrode materials,the device configuration of CDI significantly impacts its performance.Utilizing numerical simulations to study the optimal device configuration is expected to enhance economic efficiency and promote the practical application of CDI.While current reviews of CDI focus primarily on electrode materials and device configurations,there is a dearth of comprehensive reviews on cutting-edge numerical simulation research in the CDI field.This review commences with the earliest continuous-scale model used to describe the dynamic process of CDI.It systematically categorizes multi-angle numerical simulations in CDI,summarizes the strengths and weaknesses of different numerical simulation methods,and anticipates future development directions.Continuous-scale models accurately characterize the ion dynamics of CDI,determining rate and process constraints.Pore-scale models analyze the microstructure of porous media,obviating the need for empirical formulas to preset transport parameters for continuous-scale models.Researchers have introduced molecular dynamics simulation and density functional theory into CDI research,effectively analyzing the influence of structural features at the molecular/atomic level of electrode materials on the CDI system.This aids researchers in enhancing the efficacy and ionic selectivity of CDI electrode materials through pore engineering,defect engineering,and electrochemical microcosmic modulation engineering.Finite element analysis guides improvements in ion diffusion and stability of electrode materials,while computational fluid dynamics provides references for designing high-performance CDI devices.Data-driven machine learning excels in handling nonlinear data and uncovering complex mechanisms of CDI water treatment processes,while digital twin technology can reduce operation and maintenance costs of CDI.Considering costs in practical applications,techno-economic analysis plays a pivotal role in promoting the practical application of CDI technology.This review,the first of its kind,provides an essential theoretical foundation and research ideas for the new paradigm of CDI research by summarizing the advantages and disadvantages of different numerical simulation methods and offering insights into cutting-edge perspectives in the field of CDI.
张笑晨;于飞;马杰
同济大学环境科学与工程学院,环境功能材料研究中心,上海 200092||喀什大学土木工程学院,新疆 喀什 844000上海海洋大学海洋生态与环境学院,上海 201306同济大学环境科学与工程学院,环境功能材料研究中心,上海 200092||喀什大学土木工程学院,新疆 喀什 844000
化学
电容去离子分子动力学密度泛函理论有限元分析机器学习
Capacitive deionizationMolecular dynamicsDensity functional theoryFinite element analysisMachine learning
《物理化学学报》 2024 (11)
1-18,18
The project was supported by the National Natural Science Foundation of China(22276137,52170087). 国家自然科学基金(22276137,52170087)资助项目
评论