| 注册
首页|期刊导航|现代电子技术|改进YOLOv5的棉田杂草检测

改进YOLOv5的棉田杂草检测

杨明轩 陈琳

现代电子技术2024,Vol.47Issue(24):60-67,8.
现代电子技术2024,Vol.47Issue(24):60-67,8.DOI:10.16652/j.issn.1004-373x.2024.24.010

改进YOLOv5的棉田杂草检测

Improved YOLOv5 detection of weeds in cotton fields

杨明轩 1陈琳1

作者信息

  • 1. 长江大学 计算机科学学院,湖北 荆州 434000
  • 折叠

摘要

Abstract

In allusion to the difficulty of detecting and identifying weeds in cotton fields in complex environments,a cotton field weed detection algorithm CST-YOLOv5 is proposed to improve YOLOv5.The data enhancement algorithm is used to solve the problem of insufficient model training effect due to the unbalanced distribution of weed samples in cotton fields.A coordinate attention mechanism is added to the backbone network by considering channel information and direction location information.The Swin Transformer Block is introduced into the C3 module in the neck network to obtain a new C3STR module to preserve global context information and multi-scale features.The experimental results show that the mAP value of the CST-YOLOv5 model can reach 95.1%,and the F1 value can reach 90.4%,which are respectively increased by 4.8%and 3.2%compared with the original YOLOv5 model.It verifies that the designed algorithm has good robustness and can accurately identify many types of weeds.

关键词

杂草检测/YOLOv5/深度学习/目标检测/注意力机制/棉花保护

Key words

weed detection/YOLOv5/deep learning/target detection/attention mechanism/cotton protect

分类

电子信息工程

引用本文复制引用

杨明轩,陈琳..改进YOLOv5的棉田杂草检测[J].现代电子技术,2024,47(24):60-67,8.

基金项目

国家自然科学基金项目(62006028) (62006028)

湖北省自然科学基金项目(2022CFB132) (2022CFB132)

湖北省教育厅自然科学研究计划项目(B2022038) (B2022038)

现代电子技术

OA北大核心CSTPCD

1004-373X

访问量0
|
下载量0
段落导航相关论文