首页|期刊导航|中国光学(中英文)|基于张量分解与非下采样Contourlet变换遥感图像增强

基于张量分解与非下采样Contourlet变换遥感图像增强OA北大核心CSTPCD

Remote-sensing image enhancement based on tensor decomposition and nonsubsampled Contourlet transform

中文摘要英文摘要

图像质量低、特征信息不明显是遥感图像获取过程中的常见问题.传统的图像增强方法常常因为不能有效地整合全局信息,从而不能高精度、高效率地凸显有用信息.本文通过结合张量分解和非下采样Contourlet变换,提出一种改进的遥感图像增强方法.使用优化的非下采样Contourlet变换对原始图像进行分解,将各尺度和方向的高频细节图像组合成高阶张量.通过贝叶斯概率张量补全,从不完全张量中识别潜在因子,以预测图像缺失的细节信息.实验结果表明:所提出方法能在有效恢复样张缺失信息的同时突出图像的特征信息,与不同图像增强方法相比,样张处理后在信噪比、结构相似度以及均方根误差方面最大提升分别为27.9%、37.6%和45.4%.改进的遥感图像增强方法在可视化比较和定量评价方面优于常用的图像增强方法.

In the process of remote sensing image acquisition,low quality and lack of important information of image are common problems as the existence of interference information.Traditional image enhancement methods often cannot highlight useful information with high precision and high efficiency because they can-not integrate global information effectively.In order to solve these problems,a remote-sensing image en-hancement method based on tensor decomposition and nonsubsampled Contourlet transform is proposed.The optimized nonsubsampled Contourlet transform is used to decompose the original image,and the high-order tensor is composed of high-frequency detail images in all directions on all scales.Through Bayesian probab-ility tensor completion,the potential factors recognized from the incomplete tensor are used to predict the missing details of the image.Experimental results indicate that the proposed method can recover the missing information more effectively and highlight the feature information of the image.Compared with different im-age enhancement methods,the maximum improvement of signal-to-noise ratio,structure similarity and root mean square error are 27.9%,37.6%and 45.4%,respectively.The proposed method is superior to the com-mon image enhancement methods in quantitative evaluation and visual comparison.

吴庆玲;石强;杜永盛;雷赛;卢明明

吉林交通职业技术学院,吉林长春 130015中国第一汽车股份有限公司新能源开发院,吉林长春 130011长春工业大学吉林省微纳与超精密制造省级重点实验室,吉林长春 130012||长春工业大学吉林省高性能制造与检测国际科技合作重点实验室,吉林长春 130012长春工业大学吉林省微纳与超精密制造省级重点实验室,吉林长春 130012长春工业大学吉林省微纳与超精密制造省级重点实验室,吉林长春 130012||长春工业大学吉林省高性能制造与检测国际科技合作重点实验室,吉林长春 130012

计算机与自动化

图像增强Contourlet变换张量分解贝叶斯概率张量补全

image enhancementContourlet transformtensor decompositionbayesian probability tensor completion

《中国光学(中英文)》 2024 (6)

1307-1315,9

吉林省科技厅科技发展计划重点项目(No.202401021107GX)Supported by Key Projects of Science and Technology Development Program of Jilin Provincial Science and Technology Department(No.202401021107GX)

10.37188/CO.2024-0193

评论