3D打印氧化锆图案化设计及表面预处理方式对粘接性能影响研究OACSTPCD
Study on the influence of 3D printing zirconia patterned design and surface pretreatment methods on adhesive performance
目的 研究应用3D打印技术图案化设计氧化锆微孔数目及不同表面预处理方法对粘接性能的影响.方法 在10 mm × 10 mm × 1 mm氧化锆试件表面设计边长约为100 µm的正方形微孔,根据微孔数目(0、45、90、135、180、225个)3D打印6种不同粘接面积试件(每种12个),并依次记为1.0S、1.2S、1.4S、1.6S、1.8S和2.0S.将各微孔数目试件随机分为4个不同表面预处理组(每组3个),包括空白对照组(不进行处理)、喷砂组(喷砂处理)、喷砂+处理剂组(喷砂处理后涂布氧化锆处理剂Z-PRIME plus)、喷砂+二氧化硅涂层组(喷砂处理后涂布氧化锆预处理剂Biomic LiSi Connect).检测各表面预处理组1.0S试件表面接触角,各表面预处理组不同微孔数目试件剪切粘接强度,并在体视显微镜下观察断裂模式.结果 ①喷砂组、喷砂+处理剂组、喷砂+二氧化硅涂层组的接触角逐渐减小,依次为(58.16±3.40)、(45.38±3.94)、(22.72±5.74)°,且喷砂+处理剂组、喷砂+二氧化硅涂层组的接触角小于空白对照组[(60.38±4.28)°],差异均有统计学意义(均P<0.05).②不同表面预处理方法和微孔数目对剪切粘接强度的测量结果均具有显著影响(F值分别为781.221、35.442,均P<0.001),且表面预处理方法与微孔数目这两因素间相互作用(F=10.281,P<0.001).组间及组内两两比较结果显示,微孔数目对喷砂组粘接强度无影响;其对喷砂+二氧化硅涂层组的影响仅是2.0S试件的剪切粘接强度大于1.8S试件,差异有统计学意义(P<0.05).在空白对照组中2.0S试件的剪切粘接强度大于组内其他所有微孔数目试件,在喷砂+处理剂组中2.0S试件的剪切粘接强度大于除1.6S外的其他所有微孔数目试件,差异均有统计学意义(均P<0.05).在1.0S和2.0S试件中,喷砂+处理剂组和喷砂+二氧化硅涂层组剪切粘接强度均大于喷砂组和空白对照组,且喷砂+处理剂组剪切粘接强度大于喷砂+二氧化硅涂层组,差异均有统计学意义(均P<0.05).③各表面预处理组2.0S试件粘接界面断裂模式均为混合破坏,各表面预处理组1.0S试件粘接界面主要以粘接破坏为主,暂未发现内聚破坏模式.结论 喷砂后涂布氧化锆处理剂Z-PRIME plus或二氧化硅涂层(Biomic LiSi Connect)处理均可增加氧化锆粘接强度,且喷砂后涂布氧化锆处理剂联合氧化锆表面微孔处理会进一步提升其粘接强度.
Objective To study the influence of 3D print-ing patterned design of the number of zirconia microholes and different surface pretreatment methods on the bond-ing strength.Methods On the surface of 10 mm × 10 mm × 1 mm zirconia specimens,square microholes with a side length of about 100 μm were designed.Six specimens with different bonding areas were 3D printed according to the number of microholes(0,45,90,135,180,225),and were respectively recorded as 1.0S,1.2S,1.4S,1.6S,1.8S,and 2.0S.The specimens with different numbers of microholes were randomly divided into four different surface pretreatment groups(each group had 3 specimens),includ-ing a blank control group(no treatment),a sandblasting group(with sandblasting treatment),a sandblasting+treatment agent group(with sandblasting treatment followed by application of zirconia treatment agent Z-PRIME plus),and a sand-blasting+silica coating group(with sandblasting treatment followed by application of zirconia pretreatment agent Biomic LiSi Connect).The contact angle of the surface of the 1.0S specimens in each surface pretreatment group was detected,and the shear bond strength of the specimens with different numbers of microholes in each surface pretreatment group was measured.The fracture mode was observed under an inverted microscope.Results ①The contact angle of the sand-blasting group,the sandblasting+treatment agent group,and the sandblasting+silica coating group decreased gradual-ly,being(58.16±3.40)°,(45.38±3.94)°,and(22.72±5.74)°,respectively;the contact angle of the sandblasting+treatment agent group and the sandblasting+silica coating group was smaller than that of the blank control group([60.38±4.28]°);the differences were statistically significant(all P<0.05).②Different surface pretreatment methods and microhole numbers had a significant effect on the measurement results of shear bond strength(F value was 781.221 and 35.442,respectively,all P<0.001).Furthermore,the surface pretreatment method and the number of microholes in-teracted with each other(F=10.281,P<0.001).The results of the intergroup and intragroup comparisons showed that the number of microholes had no effect on the bond strength of the sandblasting group;its effect on the sandblasting+sil-ica coating group was also small,with only the 2.0S specimen having a higher shear bond strength than the 1.8S specimen,and there was a statistically significant difference(P<0.05).In the blank control group,the 2.0S specimen had a higher shear bond strength than all the specimens with other microhole number within the group,and in the sandblasting+treat-ment agent group,the 2.0S specimen had a higher shear bond strength than all specimens with other microhole number except the 1.6S specimen,there being a statistically significant difference(P<0.05).In the 1.0S specimens and 2.0S specimens,the shear bond strength of the sandblasting+treatment agent group and the sandblasting+silica coating group was greater than that of the sandblasting group and the blank control group;the shear bond strength of the sand-blasting+treatment agent group was also greater than sandblasting+silica coating group;there were statistically signifi-cant differences among them(all P<0.05).③The fracture modes of the adhesive interface in the 2.0S specimens of each surface pretreatment group were all mixed failure,and the fracture modes of the adhesive interface in the 1.0S specimens of each surface pretreatment group were mainly adhesive failure,with no evidence of cohesive failure mode.Conclusion Sandblasting followed by the application of zirconia treatment agent Z-PRIME plus or silica coating(Biomic LiSi Con-nect)can increase the bond strength of zirconia,and sandblasting followed by the application of zirconia treatment agent combined with zirconia surface microhole treatment can further enhance its bond strength.
尹路;程前煌;陈钟;林垚
福建医科大学附属口腔医院,福建 福州 350000||厦门医学院附属口腔医院修复一科,厦门市口腔疾病诊疗重点实验室,福建厦门 361003||口腔生物材料福建省高校工程研究中心,厦门医学院,福建厦门 361023福建医科大学附属口腔医院,福建 福州 350000||厦门医学院附属口腔医院修复一科,厦门市口腔疾病诊疗重点实验室,福建厦门 361003||口腔生物材料福建省高校工程研究中心,厦门医学院,福建厦门 361023口腔生物材料福建省高校工程研究中心,厦门医学院,福建厦门 361023福建医科大学附属口腔医院,福建 福州 350000||厦门医学院附属口腔医院修复一科,厦门市口腔疾病诊疗重点实验室,福建厦门 361003||口腔生物材料福建省高校工程研究中心,厦门医学院,福建厦门 361023
口腔医学
3D打印氧化锆图案化设计表面预处理二氧化硅涂层粘接强度
3D printingzirconiapatterned designsurface pretreatmentsilican coatingbonding strength
《中国实用口腔科杂志》 2024 (6)
684-690,7
厦门医学院附属口腔医院科研培育基金项目(2023XKCX0001)厦门市科技计划项目(3502Z20224035)福建省医学创新课题(2022CXB022)
评论