| 注册
首页|期刊导航|兵工自动化|基于RepVGG的疲劳驾驶检测算法

基于RepVGG的疲劳驾驶检测算法

夏庆锋 李明阳 宋志强 许可儿

兵工自动化2024,Vol.43Issue(12):26-29,41,5.
兵工自动化2024,Vol.43Issue(12):26-29,41,5.DOI:10.7690/bgzdh.2024.12.007

基于RepVGG的疲劳驾驶检测算法

Fatigue Driving Detection Algorithm Based on RepVGG

夏庆锋 1李明阳 2宋志强 1许可儿2

作者信息

  • 1. 无锡学院自动化学院,江苏 无锡 214105
  • 2. 南京信息工程大学自动化学院,南京 210044
  • 折叠

摘要

Abstract

In order to improve the accuracy and deployability of fatigue driving detection method,a fatigue driving detection algorithm based on RepVGG is proposed.An atrous spatial pyramid pooling(ASPP)module was added to the model to capture the multi-scale fatigue characteristics.A Convolutional block attention module(convolutional block attention module,CBAM)is combined with an ASPP module and separately applied to the model to further emphasize and capture the multi-scale information and important regional information expressed by fatigue features,and to suppress the background information in the image.Thereby improving the performance and robustness of the model.The results show that the accuracy of the improved RepVGG algorithm on the fatigue driving data set reaches 97.34%,which is 2.51%higher than that of the original algorithm,and the number of model parameters is only 7.1×106,which has good detection accuracy and deployability.

关键词

RepVGG/疲劳驾驶检测/ASPP/CBAM

Key words

RepVGG/fatigue driving detection/ASPP/CBAM

分类

信息技术与安全科学

引用本文复制引用

夏庆锋,李明阳,宋志强,许可儿..基于RepVGG的疲劳驾驶检测算法[J].兵工自动化,2024,43(12):26-29,41,5.

基金项目

江苏省产学研合作项目(BY20230688) (BY20230688)

新一代信息技术创新项目(2022IT208) (2022IT208)

江苏高校"青蓝工程" ()

兵工自动化

OA北大核心CSTPCD

1006-1576

访问量0
|
下载量0
段落导航相关论文