面向工业数据调和、参数估计与过程模拟的精馏系统一体化平台设计OA北大核心CSTPCD
Design of a distillation system integration platform for industrial data reconcilation,parameter estimation and process simulation
过程数据是化工过程系统模拟与优化的基础,但是对于很多生产过程,部分重要变量并未设置测量点从而无法获得数据,可以采集到的数据也通常具有可信度差的特点.数据调和与参数估计是解决数据可信度差和数据缺失的两种有效方法,但是目前的研究更多只针对其中一种方法,联合方法研究较少.因此针对精馏系统数据缺失和具有显著误差的物理输入,提出一种数据调和-参数估计-过程模拟的一体化框架,并制定加速求解算法,对框架双层结构的内外两层做简化加速处理,并设计兼顾收敛性与效率的稳态模拟算法应用于内层优化.此外面向原始工业数据,引入小波变换实现连续时段工业数据的自动判稳,不再需要人为划分稳态工况,在自动判别划分稳态工况的基础上逐工况调用所设计的一体化框架便可全自动完成计算分析.最终将研究内容应用于苯二胺精馏系统,划分好所有稳态工况后计算成功的工况达到 98%,结果表明框架及算法具有较好的适用性与收敛性.
Process data is the basis for simulation and optimization of chemical process systems.However,some important variables may not set measuring points for many production processes,which is not able to obtain,and the data that can be collected usually has poor reliability.Data reconciliation and parameter estimation are two effective methods to solve the problem of poor data reliability and data missing,but current research focuses on only one of the methods with the joint method less studied.Therefore,this study proposed an integrated framework of data reconcilation-parameter estimation-process simulation for physical inputs with significant errors or missing data in distillation systems.An accelerated algorithm was developed to accelerate and simplify the solution of the two-layer framework,and a steady-state simulation algorithm was designed considering convergence and efficiency,which was applied to the inner layer of the double-layer framework.In addition,wavelet transform was used to realize automatic stability judgment of original industrial data in continuous periods.Manually decision of steady state is no longer necessary,and the integrated framework can be automatically used to complete the calculation and analysis based on automatic dividing of steady state conditions.Finally,the platform was applied to a phenylenediamine distillation system,and the success rate of the integrated framework was 98%under all steady-state conditions,which proves that the framework and the algorithm have good applicability and convergence.
胡玉洁;陶新渝;陈曦
浙江大学 工业控制技术国家重点实验室,控制科学与工程学院,浙江 杭州 310027浙江大学 工业控制技术国家重点实验室,控制科学与工程学院,浙江 杭州 310027浙江大学 工业控制技术国家重点实验室,控制科学与工程学院,浙江 杭州 310027
化学工程
过程系统数据调和参数估计精馏物理输入小波变换苯二胺
process systemsdata reconciliationparameter estimationdistillationphysical inputwavelet transformphenylenediamine
《高校化学工程学报》 2024 (6)
897-908,12
浙江省科技计划项目"尖兵领雁+X"研发攻关计划(2024C01028).
评论