| 注册
首页|期刊导航|High Technology Letters|SPaRM: an efficient exploration and planning framework for sparse reward reinforcement learning

SPaRM: an efficient exploration and planning framework for sparse reward reinforcement learning

BAN Jian LI Gongyan XU Shaoyun

High Technology Letters2024,Vol.30Issue(4):P.344-355,12.
High Technology Letters2024,Vol.30Issue(4):P.344-355,12.DOI:10.3772/j.issn.1006-6748.2024.04.002

SPaRM: an efficient exploration and planning framework for sparse reward reinforcement learning

BAN Jian 1LI Gongyan 2XU Shaoyun2

作者信息

  • 1. Institute of Microelectronics,Chinese Academy of Sciences,Beijing 100029,P.R.China University of Chinese Academy of Sciences,Beijing 100049,P.R.China
  • 2. Institute of Microelectronics,Chinese Academy of Sciences,Beijing 100029,P.R.China
  • 折叠

摘要

关键词

reinforcement learning(RL)/sparse reward,reward-free exploration(RFE)/space partitioning(SP)/reverse merging(RM)

分类

信息技术与安全科学

引用本文复制引用

BAN Jian,LI Gongyan,XU Shaoyun..SPaRM: an efficient exploration and planning framework for sparse reward reinforcement learning[J].High Technology Letters,2024,30(4):P.344-355,12.

基金项目

Supported by the International Partnership Program of Chinese Academy of Sciences(No.184131KYSB20200033). (No.184131KYSB20200033)

High Technology Letters

1006-6748

访问量0
|
下载量0
段落导航相关论文