| 注册
首页|期刊导航|化工进展|机器学习在喷射器研究中的应用进展

机器学习在喷射器研究中的应用进展

戴征舒 左元浩 陈孝罗 张犁 赵根 张学军 张华

化工进展2024,Vol.43Issue(z1):1-12,12.
化工进展2024,Vol.43Issue(z1):1-12,12.DOI:10.16085/j.issn.1000-6613.2024-0375

机器学习在喷射器研究中的应用进展

Process in the application of machine learning in ejector research

戴征舒 1左元浩 2陈孝罗 2张犁 3赵根 2张学军 4张华2

作者信息

  • 1. 上海理工大学能源与动力工程学院,上海 200093||浙江大学制冷与低温研究所,浙江 杭州 310027
  • 2. 上海理工大学能源与动力工程学院,上海 200093
  • 3. 浙江大学先进技术研究院,浙江 杭州 310027
  • 4. 浙江大学制冷与低温研究所,浙江 杭州 310027
  • 折叠

摘要

Abstract

The ejector is a widely used mechanical device with advantages such as simple structure,low initial cost,easy maintenance,and reliable operation.It is widely applied in fields such as refrigeration,desalination,chemical engineering,fuel cells,aerospace,etc.The ejector does not directly consume mechanical energy,which allows for energy-saving purposes,making it more important and attractive with the national goals of"carbon peaking and carbon neutrality"in China.Machine learning methods,as a data-driven automated analysis approach,can be used for analyzing the internal flow characteristics of ejectors and optimizing ejector performance.In recent years,a small number of scholars have already applied machine learning methods to the study of ejectors in various applications,aiming at improving the ejector performance and the system performance.But the research in the open literature is currently scattered,and the state of the art is not yet clear.The present work comprehensively reviewed the literature on the application of machine learning methods in the study of ejectors for different applications,analyzed the current research status,summarized the machine learning methods utilized in the open literature,and pointed out that in the future machine learning methods can be applied to the study of internal flow characteristics of ejectors,providing a basis and guidance for improving the efficiency and performance of ejectors.Machine learning methods can be applied to the study of ejector performance under variable operating conditions,constructing a pathway from automated design to real-world application of ejectors.Constructing more suitable algorithms and proposing a series of targeted solutions.

关键词

喷射制冷/喷射器/机器学习/人工神经网络/预测/优化

Key words

ejector refrigeration/ejector/machine learning/artificial neural network/prediction/optimization

分类

通用工业技术

引用本文复制引用

戴征舒,左元浩,陈孝罗,张犁,赵根,张学军,张华..机器学习在喷射器研究中的应用进展[J].化工进展,2024,43(z1):1-12,12.

基金项目

国家自然科学基金(51906152) (51906152)

上海市浦江人才计划(22PJ1411200) (22PJ1411200)

浙江省"领雁"研发攻关计划(2024C03117). (2024C03117)

化工进展

OA北大核心CSTPCD

1000-6613

访问量0
|
下载量0
段落导航相关论文