| 注册
首页|期刊导航|南方电网技术|基于图神经网络与强化学习的配电网电压与无功功率优化方法

基于图神经网络与强化学习的配电网电压与无功功率优化方法

朱涛 海迪 李文云 黄伟 周胜超 吴明贺 王逸飞

南方电网技术2024,Vol.18Issue(11):67-78,12.
南方电网技术2024,Vol.18Issue(11):67-78,12.DOI:10.13648/j.cnki.issn1674-0629.2024.11.008

基于图神经网络与强化学习的配电网电压与无功功率优化方法

Voltage and Reactive Power Optimization Method for Distribution Networks Based on Graph Neural Network and Reinforcement Learning

朱涛 1海迪 2李文云 3黄伟 3周胜超 2吴明贺 4王逸飞4

作者信息

  • 1. 云南电网有限责任公司红河供电局,云南 红河 661100
  • 2. 昆明供电局电力调度控制中心,昆明 650011
  • 3. 云南电网有限责任公司,昆明 650217
  • 4. 东南大学电气工程学院,南京 210096
  • 折叠

摘要

Abstract

High propotional distributed photovoltaic integration changes the operation mode of the distribution networks,and leads to a series of problems such as excessive active power losses,reduced service life of regulating equipment,and exceeding node voltage limits in the distribution networks.Based on this background,firstly the voltage and reactive power optimization problem is modelled as a Markov decision process,which is solved by using a model-free deep reinforcement learning method that captures the intermit-tence of PV and load fluctuation from historical operating data.A graph convolutional network-proximal policy optimization(GCN-PPO)algorithm is proposed which improves the perception of reinforcement learning agent on graph data of distribution networks by embedding the graph convolutional network.Finally,an arithmetic analysis is carried out with a modified IEEE 33-node test system to verify the effectiveness of the proposed method and its advantages over other methods.The results show that the trained reinforce-ment learning agent based on graph convolutional networks exhibits better performance when the topology of the distribution network changes and the measurement data are lost.

关键词

分布式光伏/配电网/电压无功优化/深度强化学习/图卷积网络

Key words

distributed photovoltaics/distribution networks/voltage and reactive power optimization/deep reinforcement learning/graph convolutional networks

分类

动力与电气工程

引用本文复制引用

朱涛,海迪,李文云,黄伟,周胜超,吴明贺,王逸飞..基于图神经网络与强化学习的配电网电压与无功功率优化方法[J].南方电网技术,2024,18(11):67-78,12.

基金项目

国家自然科学基金资助项目(52007032). Supported by the National Natural Science Foundation of China(52007032). (52007032)

南方电网技术

OA北大核心CSTPCD

1674-0629

访问量0
|
下载量0
段落导航相关论文