| 注册
首页|期刊导航|南方电网技术|考虑多变量建模的中期负荷预测模型

考虑多变量建模的中期负荷预测模型

徐利美 赵金 李裕民 姚非 邢吉伟 续欣莹

南方电网技术2024,Vol.18Issue(11):79-87,9.
南方电网技术2024,Vol.18Issue(11):79-87,9.DOI:10.13648/j.cnki.issn1674-0629.2024.11.009

考虑多变量建模的中期负荷预测模型

Medium-Term Load Forecasting Model Considering Multivariate Modeling

徐利美 1赵金 2李裕民 3姚非 4邢吉伟 5续欣莹5

作者信息

  • 1. 国网山西省电力公司,太原 030000
  • 2. 国网山西省电力公司电力科学研究院,太原 030001
  • 3. 山西电力交易中心有限公司,太原 030021
  • 4. 国网太原供电公司,太原 030012
  • 5. 太原理工大学电气与动力工程学院,太原 030024
  • 折叠

摘要

Abstract

Medium-term load forecasting is influenced by multiple external variables such as temperature,holidays,and weekends.Although long short-term memory(LSTM)networks have shown strong predictive ability in short-term load forecasting,they cannot establish a good correlation between multiple external variables and predicted load in medium-term load forecasting.To address the above issues,parallel LSTM structures and time series N-node tree LSTM(t-N Tree LSTM)structures are proposed.By introducing branch structures and tree structures to construct finer feature granularity,modeling of medium-term load forecasting is achieved.Finally,experiments are conducted on the 2017 global energy forecasting competition dataset GEFCom2017,and the results show that finer feature granularity is beneficial for obtaining higher accuracy prediction results in the medium-term load forecasting process,verifying the effectiveness of the parallel LSTM model and t-N Tree LSTMs model.

关键词

中期负荷预测/长短时记忆网络/时间序列/特征粒度/多变量建模

Key words

medium-term load forecasting/LSTM/time series/feature granularity

分类

动力与电气工程

引用本文复制引用

徐利美,赵金,李裕民,姚非,邢吉伟,续欣莹..考虑多变量建模的中期负荷预测模型[J].南方电网技术,2024,18(11):79-87,9.

基金项目

国家重点研发计划资助项目(2017YFA0700304) (2017YFA0700304)

山西省自然科学基金面上项目(20210302123189). Supported by the National Key Research and Development Program of China(2017YFA0700304) (20210302123189)

the Natural Science Foundation of Shanxi Province(20210302123189). (20210302123189)

南方电网技术

OA北大核心CSTPCD

1674-0629

访问量0
|
下载量0
段落导航相关论文