| 注册
首页|期刊导航|水力发电学报|混凝土坝施工场景人-机-环多要素识别方法

混凝土坝施工场景人-机-环多要素识别方法

陈云 涂宇轩 陈述 晋良海

水力发电学报2024,Vol.43Issue(12):13-22,10.
水力发电学报2024,Vol.43Issue(12):13-22,10.DOI:10.11660/slfdxb.20241202

混凝土坝施工场景人-机-环多要素识别方法

Recognition method for multi-elements in human-machine-environment scenarios of concrete dam construction

陈云 1涂宇轩 2陈述 1晋良海1

作者信息

  • 1. 三峡大学 水电工程施工与管理湖北省重点实验室,湖北 宜昌 443002||三峡大学 水利与环境学院,湖北 宜昌 443002
  • 2. 三峡大学 水利与环境学院,湖北 宜昌 443002
  • 折叠

摘要

Abstract

For concrete dam construction,traditional computer vision target recognition methods are difficult to meet the requirements for intelligent detection in complex construction sites,as it involves narrow spaces,continuous process transitions,and various other elements such as personnel,machinery,and environment(human-machine-environment or HME).These elements often lead to occlusions,dense overlaps,and variations in size and orientation.This paper describes a new method,YOLOv5-SS,for recognition of the multiple elements in the HME scenarios of such construction.By integrating a CBAM attention module,this method improves the performance of the object detector and enhances its sensitivity to HME elements of different sizes and positions.And,it incorporates the weighted bidirectional feature pyramid network(BiFPN)to enable the object detector to focus on key image information related to real-time HME elements.To validate the recognition capability of this method,a dataset based on image information from a concrete arch dam construction site is used.Comparison of YOLOv5-SS with the YOLOv5 and Faster R-CNN models demonstrates it effectively improves the efficiency and accuracy of target detection in concrete dam construction scenarios.

关键词

混凝土坝/人-机-环/多要素识别/计算机视觉/YOLOv5-SS

Key words

concrete dam construction/human-machine-environment/multi-elements recognition/computer vision/YOLOv5-SS

分类

水利科学

引用本文复制引用

陈云,涂宇轩,陈述,晋良海..混凝土坝施工场景人-机-环多要素识别方法[J].水力发电学报,2024,43(12):13-22,10.

基金项目

国家自然科学基金(52209163 ()

52079073 ()

52479127) ()

水力发电学报

OA北大核心CSTPCD

1003-1243

访问量0
|
下载量0
段落导航相关论文