铋纳米颗粒负载的氮掺杂石墨毡用于稳定高效的铁铬液流电池OA北大核心CSTPCD
Bismuth nanoparticles anchored on N-doped graphite felts to give stable and efficient iron-chromium redox flow batteries
铁铬氧化还原液流电池(ICRFB)是一种具有成本效益的可规模化储能系统,其利用资源丰富、低成本的铬和铁作为电解液的活性物质.然而,ICRFB存在Cr3+/Cr2+电化学活性低、负极易产生严重的析氢反应(HER)等问题.本文报道了一种简单的合成策略,即通过自聚合和湿化学还原方法结合煅烧处理,在氮掺杂石墨毡(GF)表面沉积了非晶态铋(Bi)纳米颗粒(NPs),其作为ICRFB的负极材料时可展示出高效的电化学性能.生成的Bi NPs与H+形成中间体,极大地抑制了HER副反应.此外,Bi的引入和GF表面的N掺杂通过协同作用显著提高了 Fe2+/Fe3+和Cr3+/Cr2+的电化学活性,降低了电荷传递电阻,提高了反应传质速率.在不同的电流密度下,经25次循环,库仑效率仍高达97.7%.在60.0mA cm-2电流密度下,能量效率达到85.8%,超过了许多其他报道的材料.循环100次后容量达到862.7 mAh/L,约为GF的5.3倍.
Iron-chromium redox flow batteries(ICRFBs)use abundant and inexpensive chromium and iron as the active sub-stances in the electrolyte and have great potential as a cost-effective and large-scale energy storage system.However,they are still plagued by several issues,such as the low electrochemical activity of Cr3+/Cr2+and the occurrence of the undesired hydrogen evolu-tion reaction(HER).We report the synthesis of amorphous bismuth(Bi)nanoparticles(NPs)immobilized on N-doped graphite felts(GFs)by a combined self-polymerization and wet-chemistry reduction strategy followed by annealing,which are used as the negat-ive electrodes for ICRFBs.The resulting Bi NPs react with H+to form intermediates and greatly inhibit the parasitic HER.In addi-tion,the combined effect of Bi and N dopants on the surface of GF dramatically increases the electrochemical activity of Fe2+/Fe3+and Cr3+/Cr2+,reduces the charge transfer resistance,and increases the mass transfer rate compared to plain GF.At the optimum Bi/N ratio of 2,a high coulombic efficiency of up to 97.7%is maintained even for 25 cycles at different current densities,the energy effi-ciency reaches 85.8%at 60.0 mA cm-2,exceeding many other reported materials,and the capacity reaches 862.7 mAh L-1after 100 cycles,which is about 5.3 times that of bare GF.
车航欣;高宇飞;杨家辉;洪崧;郝磊端;徐亮;Sana Taimoor;Alex W.Robertson;孙振宇
北京化工大学化学工程学院有机-无机复合材料国家重点实验室,北京 100000桂林电子科技大学机电工程学院,广西桂林 541000北京化工大学化学工程学院有机-无机复合材料国家重点实验室,北京 100000北京化工大学化学工程学院有机-无机复合材料国家重点实验室,北京 100000北京化工大学化学工程学院有机-无机复合材料国家重点实验室,北京 100000北京化工大学化学工程学院有机-无机复合材料国家重点实验室,北京 100000北京化工大学化学工程学院有机-无机复合材料国家重点实验室,北京 100000Department of Physics,University of Warwick,Coventry CV4 7AL,UK北京化工大学化学工程学院有机-无机复合材料国家重点实验室,北京 100000
化学工程
铁铬液流电池Bi负极氮掺杂石墨毡
Iron-chromium flow batteryBiNegative electrodeNitrogen dopingGraphite felt
《新型炭材料(中英文)》 2024 (1)
131-141,11
This work was supported by the National Key Research and Development Program of China(2022YFC2105900),National Natural Science Found-ation of China(22372007 and 21972010),and Funda-mental Research Funds for the Central Universities(JD2310,ZY2317 and buctrc202226). 本研究受国家重点研发计划(2022YFC2105900)国家自然科学基金项目(22372007、21972010)中央高校基本科研业务费专项资金(JD2310、ZY2317、buctrc202226).
评论