金属有机框架及其衍生物在锂离子电容器中的应用OA北大核心CSTPCD
The application of metal-organic frameworks and their derivatives for lithium-ion capacitors
为满足不断增长的能源存储需求,迫切需要既有高能量密度又具有高功率密度的能源存储装置.锂离子电容器(LICs)可有效平衡传统电池的高能量密度与超级电容器(SCs)的卓越功率密度和长寿命.然而,LICs的发展面临着正负极之间动力学过程和容量不匹配的问题.金属有机框架(MOFs)及其衍生物具有大的比表面积、丰富的孔结构、多样的拓扑结构以及可定制的活性位点而受到广泛关注,成为实现高性能LICs的有力候选材料.MOF衍生炭因其高的电导性和大的比表面积,可提供更多电荷存储位点和快速离子传输通道.MOF衍生的过渡金属氧化物具有高比容量和优异的电化学稳定性.此外,MOF衍生的金属化合物/炭之间的协同效应,增强了电容性和法拉第反应,从而有利于提高其整体电化学性能.本综述系统总结了 MOFs及其衍生物在LICs领域的最新研究进展.文章首先概述了 LICs的基本原理,然后探讨了MOF基复合材料的合成策略及配体选择.接着,分析了原始MOFs及其衍生材料(如碳材料和金属化合物)在提升LICs性能方面的优势.最后,本文讨论了 MOFs及其衍生物在LICs应用中所面临的主要挑战,并提出了未来研究的方向和建议.
There is an urgent need for lithium-ion capacitors(LICs)that have both high energy and high power densities to meet the continuously growing energy storage demands.LICs effectively balance the high energy density of traditional rechargeable bat-teries with the superior power density and long life of supercapacitors(SCs).Nevertheless,the development of LICs is still hampered by limited kinetic processes and capacity mismatch between the cathode and anode.Metal-organic frameworks(MOFs)and their de-rivatives have received significant attention because of their extensive specific surface area,different pore structures and topologies,and customizable functional sites,making them compelling candidate materials for achieving high-performance LICs.MOF-derived carbons,known for their exceptional electronic conductivity and large surface area,provide improved charge storage and rapid ion transport.MOF-derived transition metal oxides contribute to high specific capacities and improved electrochemical stability.Addi-tionally,MOF-derived metal compounds/carbons provide combined effects that increase both the capacitive and Faradaic reactions,leading to a superior overall performance.The review begins with an overview of the fundamental principles of LICs,followed by an exploration of synthesis strategies and ligand selection for MOF-based composite materials.It then analyzes the advantages of origin-al MOFs and their derived materials,such as carbon materials and metal compounds,in enhancing LIC performance.Finally,the re-view discusses the major challenges faced by MOFs and their derivatives in LIC applications and offers future research directions and recommendations.
赵沙沙;张熊;李晨;安亚斌;胡涛;王凯;孙现众;马衍伟
中国科学院电工研究所,高密度电磁动力与系统重点实验室(中国科学院),北京 100190||中国科学院大学,北京 100049中国科学院电工研究所,高密度电磁动力与系统重点实验室(中国科学院),北京 100190||中国科学院大学,北京 100049||齐鲁中科电工与先进电磁驱动技术研究所,山东省先进电磁转换技术重点实验室,山东济南 250013中国科学院电工研究所,高密度电磁动力与系统重点实验室(中国科学院),北京 100190||齐鲁中科电工与先进电磁驱动技术研究所,山东省先进电磁转换技术重点实验室,山东济南 250013中国科学院电工研究所,高密度电磁动力与系统重点实验室(中国科学院),北京 100190||中国科学院大学,北京 100049||齐鲁中科电工与先进电磁驱动技术研究所,山东省先进电磁转换技术重点实验室,山东济南 250013中国科学院电工研究所,高密度电磁动力与系统重点实验室(中国科学院),北京 100190||中国科学院大学,北京 100049中国科学院电工研究所,高密度电磁动力与系统重点实验室(中国科学院),北京 100190||中国科学院大学,北京 100049||齐鲁中科电工与先进电磁驱动技术研究所,山东省先进电磁转换技术重点实验室,山东济南 250013中国科学院电工研究所,高密度电磁动力与系统重点实验室(中国科学院),北京 100190||中国科学院大学,北京 100049||齐鲁中科电工与先进电磁驱动技术研究所,山东省先进电磁转换技术重点实验室,山东济南 250013中国科学院电工研究所,高密度电磁动力与系统重点实验室(中国科学院),北京 100190||中国科学院大学,北京 100049||齐鲁中科电工与先进电磁驱动技术研究所,山东省先进电磁转换技术重点实验室,山东济南 250013
化学工程
锂离子电容器MOFs过渡金属氧化物能量密度功率密度
Lithium-ion capacitorsMOFsTransition metal oxideEnergy densityPower density
《新型炭材料(中英文)》 2024 (5)
872-895,24
评论