| 注册
首页|期刊导航|吉林大学学报(信息科学版)|基于强化学习的无人机航线规划研究

基于强化学习的无人机航线规划研究

何庆新 涂晓彬 于银辉

吉林大学学报(信息科学版)2024,Vol.42Issue(6):1025-1030,6.
吉林大学学报(信息科学版)2024,Vol.42Issue(6):1025-1030,6.

基于强化学习的无人机航线规划研究

Research on UAV Route Planning Based on Reinforcement Learning

何庆新 1涂晓彬 1于银辉2

作者信息

  • 1. 闽南理工学院信息工程学院,福建泉州 362242
  • 2. 吉林大学通信工程学院,长春 130012
  • 折叠

摘要

Abstract

The energy consumption of a UAV(Unmanned Aerial Vehicle)determines the length of its operational cycle.To address the issue of low communication-to-energy consumption ratio,a reinforcement learning-based UAV path planning solution is proposed to reduce energy consumption while maintaining high communication quality.The continuous flight space is divided into multi-layer two-dimensional grids to facilitate the generation of UAV state points,and a reward function based on communication quality parameters and energy consumption parameters is established.The Q-Learning algorithm is employed to learn and obtain the path with the optimal communication-to-energy consumption ratio.Experimental results show that the path planned by this learning model can achieve a higher communication-to-energy consumption ratio,demonstrating its practical value.

关键词

航线规划/Q-Learning算法/无人机

Key words

route planning/Q-Learning algorithm/unmanned aerial vehicle

分类

信息技术与安全科学

引用本文复制引用

何庆新,涂晓彬,于银辉..基于强化学习的无人机航线规划研究[J].吉林大学学报(信息科学版),2024,42(6):1025-1030,6.

基金项目

福建省科技厅科技计划基金资助项目(2024H0038) (2024H0038)

吉林大学学报(信息科学版)

OACSTPCD

1671-5896

访问量0
|
下载量0
段落导航相关论文