基于数字孪生的汽车自动化生产线故障诊断研究OA
Research on Fault Diagnosis of Automotive Automatic Production Line Based on DT
传统的机器学习算法对汽车自动化生产线开展故障诊断研究,需满足训练集和测试集具有相同的分布,且需要较多的训练样本,但在实际中,故障样本数据难以获取、生产线运行工况多变,导致故障分类准确率较低.鉴于以上问题,文中提出了一种基于数字孪生(Digital Twin,DT)技术的汽车自动化生产线故障诊断研究方法,该方法首先使用SolidWorks对实际生产线建模,然后通过Unity3D软件进行渲染,并结合PLC进行DT模型仿真.最后结合迁移学习技术和卷积神经网络技术实现故障诊断,并与现有方法进行了对比,验证了所提方法的可行性.
Traditional machine learning algorithms used for fault diagnosis in the automated production lines of automobiles require that the training and test sets have the same distribution and need a substantial number of training samples.However,in practice,fault sample data are difficult to acquire,and the oper-ating conditions of production lines are highly variable,leading to a low fault classification accuracy.In view of these problems,this paper proposes a research method for fault diagnosis in automated automobile production lines based on Digital Twin(DT)technology.This method initially models the actual produc-tion lines using SolidWorks,followed by rendering through Unity 3D software,and combines with PLC for DT model simulation.Finally,the method utilizes transfer learning techniques and convolutional neural networks to achieve fault diagnosis.The feasibility of the proposed method is verified by comparison with existing methods.
刘雅;何良涛;常硕;祁泽民
河北水利电力学院 电气自动化系,河北省沧州市黄河西路49号 061001瑞富泰克(沧州)加热器有限公司,河北省沧州市新华区沧州开发区解放东路5号 061001河北水利电力学院 电气自动化系,河北省沧州市黄河西路49号 061001河北水利电力学院 电气自动化系,河北省沧州市黄河西路49号 061001
计算机与自动化
DT故障诊断Unity3D自动化生产线卷积神经网络
DTfault diagnosisunity3Dautomated production lineconvolutional neural network
《河北水利电力学院学报》 2024 (4)
44-49,6
河北省高等学校科学研究计划项目(ZC2023078)
评论