首页|期刊导航|工程设计学报|基于小波包分解与随机森林的离心泵故障诊断

基于小波包分解与随机森林的离心泵故障诊断OA北大核心CSTPCD

Centrifugal pump fault diagnosis based on wavelet pack decomposition and random forest

中文摘要英文摘要

针对核电厂离心泵在线故障诊断困难的问题,提出了一种基于小波包分解与随机森林的故障诊断方法.首先,利用小波包分解对离心泵电机驱动端径向垂直方向的振动信号进行3层分解并提取子频带能量特征.然后,基于离心泵振动信号的波形数据提取时域统计特征,并与小波包能量特征相结合作为随机森林模型的输入.最后,通过由振动试验得到的离心泵振动数据集对随机森林模型进行训练,形成离心泵故障诊断模型,并对该模型与支持向量机、逻辑斯蒂回归、K近邻、高斯朴素贝叶斯等机器学习模型在相同的离心泵振动数据集上进行了对比测试.结果表明,所构建的模型能够准确识别离心泵正常、叶轮破损、叶轮堵塞、电机轴承故障等运行状态,并表现出更优的分类性能.基于小波包分解与随机森林的故障诊断方法可以有效地从振动信号中提取特征并实现故障分类,对于核电厂离心泵在线故障智能诊断具有一定的可行性和有效性.

Aiming at the difficulties of on-line fault diagnosis of centrifugal pumps in nuclear power plants,a fault diagnosis method based on wavelet pack decomposition and random forest is proposed.Firstly,the wavelet pack decomposition was used to decompose the vibration signal in the radial vertical direction of the centrifugal pump motor drive end into three layers,and the sub-band energy features were extracted.Then,the time-domain statistical features were extracted based on the waveform data of centrifugal pump vibration signal,and combined with wavelet packet energy features as inputs for the random forest model.Finally,the random forest model was trained with centrifugal pump vibration dataset collected from vibration test,and the centrifugal pump fault diagnosis model was formed.This model was compared with machine learning models such as support vector machine,logistic regression,K-nearest neighbor and Gaussian Naive Bayes on the same centrifugal pump vibration dataset.The results showed that the constructed model could accurately identify different operating states of the centrifugal pump,such as normal operation,impeller damage,impeller blockage and motor bearing fault,and exhibited better classification performance.The fault diagnosis method based on wavelet packet decomposition and random forest can effectively extract features from vibration signals and realize fault classification,which has certain feasibility and effectiveness for on-line fault intelligent diagnosis of centrifugal pumps in nuclear power plants.

马飞;邵礼光;徐君;陶梦秋;袁沛;胡炳涛

杭州景业智能科技股份有限公司,浙江 杭州 310053杭州景业智能科技股份有限公司,浙江 杭州 310053杭州景业智能科技股份有限公司,浙江 杭州 310053杭州景业智能科技股份有限公司,浙江 杭州 310053杭州景业智能科技股份有限公司,浙江 杭州 310053浙江大学机械工程学院,浙江 杭州 310028

机械工程

离心泵故障诊断振动信号小波包分解随机森林

centrifugal pumpfault diagnosisvibration signalwavelet pack decompositionrandom forest

《工程设计学报》 2024 (6)

741-749,9

2022年度浙江省"尖兵""领雁"研发攻关计划项目(2022C01054)

10.3785/j.issn.1006-754X.2024.03.410

评论