电力数据驱动的电池剩余寿命预测研究OA北大核心CSTPCD
Research on power data-driven battery remaining life prediction
新型能源系统的发展愈发强调电子设备的状态监测和性能预测.电池作为新型能源系统的重要组成部分,准确监测和预测其使用寿命和性能对提高电子设备性能、降低维护成本和提升能源利用效率具有深远意义.然而,由于电池的性能受到多种复杂因素的影响,预测其剩余寿命仍是一大挑战.针对上述问题,提出了一种新型的电池剩余寿命预测模型.首先,对残差神经网络(residual neural network,ResNet)、双向长短时记忆(bidirectional long short-term memory,BiLSTM)网络和多头自注意力(multi-head self-attention,MHSA)机制进行了深入的理论研究.然后,基于上述理论构建了基于MHSA-Res-BiLSTM的电池剩余寿命预测模型,并对其超参数进行了优化设计.最后,开展电池剩余寿命预测实验,以验证所提出的MHSA-Res-BiLSTM网络的性能.实验结果显示,所提出的模型在电池剩余寿命预测上表现优越;相比于其他几种预测模型,该预测模型具有更低的平均绝对误差和均方根误差.基于MHSA-Res-BiLSTM的电池剩余寿命预测模型具有良好的预测性能和收敛性能,可为新型能源系统中电池的健康管理提供理论技术支撑.
The development of new energy systems increasingly emphasizes the state monitoring and performance prediction of electronic equipment.The battery is an important part of the new energy system,and the accurate monitoring and prediction of its service life and performance is of profound significance to improve the performance of electronic equipment,reduce maintenance costs and enhance energy efficiency.However,due to the influence of various complex factors on the battery performance,predicting its remaining life remains a major challenge.To solve these problems,a new battery remaining life prediction model was proposed.Firstly,the in-depth theoretical research was conducted on residual neural network(ResNet),bidirectional long short-term memory(BiLSTM)network and multi-head self-attention(MHSA)mechanism.Then,based on the above theories,the battery remaining life prediction model based on MHSA-Res-BiLSTM was constructed,and its hyperparameters were optimized.Finally,the battery remaining life prediction experiment was carried out to verify the performance of the proposed MHSA-Res-BiLSTM network.The experimental results showed that the proposed model performed excellently in the prediction of battery remaining life.Compared with other prediction models,the proposed prediction model had lower mean absolute error and root mean square error.The battery remaining life prediction model based on MHSA-Res-BiLSTM has good predictive performance and convergence performance,which can provide theoretical and technical support for the health management of batteries in new energy systems.
金晶;王京;周奕辰;潘文明
国家电网有限公司 上海市电力公司,上海 200122国家电网有限公司 上海市电力公司,上海 200122国家电网有限公司 上海市电力公司,上海 200122国家电网有限公司安徽省电力有限公司,安徽 合肥 230061
动力与电气工程
新型能源系统剩余寿命预测长短时记忆网络多头自注意力机制
new energy systemremaining life predictionlong short-term memory networkmulti-head self-attention mechanism
《工程设计学报》 2024 (6)
757-765,9
评论