黑龙江科技大学学报2024,Vol.34Issue(6):847-851,883,6.DOI:10.3969/j.issn.2095-7262.2024.06.004
基于位场异常二阶导数的比值改进欧拉反演方法
Improved Euler inversion method based on ratio of second derivatives of potential field anomaly
摘要
Abstract
This paper is an attempt to address the problems of poor convergence,low accuracy,and increasing calculation errors due to the improper selection of the structural index and background field in the conventional Euler inversion.The study defines the concept of the total gradient of the second-order derivative,and proposes an edge detection filter based on ratio of vertical second derivative to second to-tal gradient(RVST),and derives a new Euler equation(RVST-Euler)without structure index and back-ground field on the basis of the new filter and the conventional Euler equation.The results show that the new Euler equation improves convergence and accuracy of the solution,and the model tests and practical applications prove the abilities of RVST to tighten and correct tanomalies of source edges.The effect of RVST-Euler inversion on the horizontal locations,depths,and spatial shapes surpass conventional Euler inversion.关键词
位场/边界检测/欧拉反演/虎林盆地Key words
potential field/edge detection/Euler inversion/Hulin basin分类
天文与地球科学引用本文复制引用
邰振华,柴琳,王远浩..基于位场异常二阶导数的比值改进欧拉反演方法[J].黑龙江科技大学学报,2024,34(6):847-851,883,6.基金项目
黑龙江省普通本科高等学校青年创新人才培养计划项目(UNPYSCT-2020031) (UNPYSCT-2020031)
黑龙江省博士后面上项目(LBH-Z22249) (LBH-Z22249)