| 注册
首页|期刊导航|湖南大学学报(自然科学版)|基于改进YOLOv8的热轧带钢表面缺陷检测方法

基于改进YOLOv8的热轧带钢表面缺陷检测方法

肖科 杨昕宇 韩彦峰 宋斌

湖南大学学报(自然科学版)2024,Vol.51Issue(12):67-77,11.
湖南大学学报(自然科学版)2024,Vol.51Issue(12):67-77,11.DOI:10.16339/j.cnki.hdxbzkb.2024252

基于改进YOLOv8的热轧带钢表面缺陷检测方法

Surface Defect Detection Method for Hot-rolled Strip Steel Based on Improved YOLOv8

肖科 1杨昕宇 1韩彦峰 1宋斌2

作者信息

  • 1. 重庆大学 机械与运载工程学院,重庆 400030
  • 2. 珞石(山东)机器人集团有限公司,山东 济宁 275312
  • 折叠

摘要

Abstract

A object detection algorithm based on improved YOLOv8s is proposed to address the issues of low accuracy and low efficiency in surface defect detection of hot-rolled strip steel.Firstly,an SPPD module based on feature map secondary stitching and incorporating GAM is proposed,which enhances the model's multi-scale information fusion ability.Secondly,a feature extraction module DCN-block that integrates deformable convolution is proposed to increase the receptive field of the model and extract complete defect information.Finally,the C2f module in the feature fusion network is replaced with a BoT(bottleneck transformer)structure,and the multi-head self-attention mechanism in the Transformer is fused with convolution to enhance the model's global position information perception ability.The experimental results show that the proposed algorithm achieves mean average precision(mAP)of 80.5%on the NEU-DET dataset,which is five percentage points higher than the original YOLOv8 algorithm.At the same time,the detection speed reaches 83 frames per second,meeting the requirements of real-time detection.

关键词

热轧带钢/表面缺陷/目标检测/深度学习

Key words

hot-rolled strip steel/surface defect/object detection/deep learning

分类

信息技术与安全科学

引用本文复制引用

肖科,杨昕宇,韩彦峰,宋斌..基于改进YOLOv8的热轧带钢表面缺陷检测方法[J].湖南大学学报(自然科学版),2024,51(12):67-77,11.

基金项目

国家重点研发计划资助项目(2022YFB4702201),National Key Reaearch and Development Program of China(2022YFB4702201) (2022YFB4702201)

国家自然科学基金资助项目(52375039),National Natural Science Foundation of China(52375039) (52375039)

湖南大学学报(自然科学版)

OA北大核心CSTPCD

1674-2974

访问量0
|
下载量0
段落导航相关论文