| 注册
首页|期刊导航|湖南大学学报(自然科学版)|基于DCNN-LSTM模型的船舶违章行为检测

基于DCNN-LSTM模型的船舶违章行为检测

郑元洲 李鑫 钱龙 秦瑞朋 李果 李梦希

湖南大学学报(自然科学版)2024,Vol.51Issue(12):119-128,10.
湖南大学学报(自然科学版)2024,Vol.51Issue(12):119-128,10.DOI:10.16339/j.cnki.hdxbzkb.2024289

基于DCNN-LSTM模型的船舶违章行为检测

Ship Violation Behavior Detection Based on DCNN-LSTM Model

郑元洲 1李鑫 1钱龙 1秦瑞朋 1李果 1李梦希1

作者信息

  • 1. 武汉理工大学 航运学院,湖北 武汉 430063||内河航运技术湖北省重点实验室,湖北 武汉 430063
  • 折叠

摘要

Abstract

Accurate detection of ship violations in bridge area waters is very important for the pre-control of ship-bridge collisions.To ensure the safety of ship navigation,this paper presents a detection model of ship violation facing bridge area waters.AIS data of continuous bridge area in the Wuhan section of the Yangtze River is real-time collected and preprocessed,and the Convolutional Neural Network(CNN)with powerful feature learning ability is used to extract ship behavior information.And combined with the Long Short Term Memory(LSTM),a deep CNN-LSTM is established to learn the spatiotemporal behavior characteristics of ships,and the experimental analysis is carried out based on three kinds of illegal behaviors on ship overspeed,turning around,and overtaking.The results show that the DCNN-LSTM model proposed has a strong advantage over the CNN,LSTM,and Support Vector Machine(SVM)models,and its accuracy rate,precision rate,and F1 are 88.96%,96.49%,and 92.87%,respectively,realizing the accurate identification of ship violation.The validity and superiority of DCNN-LSTM are further demonstrated by analyzing the violation of ships in typical waters.The research results provide a reliable theoretical basis for ship safety supervision in bridge waters and promote the development of ship intelligence.

关键词

深度学习/内河航道/CNN/LSTM/DCNN-LSTM

Key words

deep learning/inland waterways/CNN/LSTM/DCNN-LSTM

分类

交通工程

引用本文复制引用

郑元洲,李鑫,钱龙,秦瑞朋,李果,李梦希..基于DCNN-LSTM模型的船舶违章行为检测[J].湖南大学学报(自然科学版),2024,51(12):119-128,10.

基金项目

国家自然科学基金资助项目(52171350),National Natural Science Foundation of China(52171350). (52171350)

湖南大学学报(自然科学版)

OA北大核心CSTPCD

1674-2974

访问量0
|
下载量0
段落导航相关论文