| 注册
首页|期刊导航|计算机应用与软件|轻量级网络识别红外图像中电气设备及其热故障

轻量级网络识别红外图像中电气设备及其热故障

张惊雷 李婉欣 赵俊亚 温显斌

计算机应用与软件2024,Vol.41Issue(12):43-48,76,7.
计算机应用与软件2024,Vol.41Issue(12):43-48,76,7.DOI:10.3969/j.issn.1000-386x.2024.12.007

轻量级网络识别红外图像中电气设备及其热故障

LIGHTWEIGHT NETWORKS APPLIED TO IDENTIFYING ELECTRICAL EQUIPMENT AND THEIR THERMAL FAULTS IN INFRARED IMAGES

张惊雷 1李婉欣 1赵俊亚 2温显斌3

作者信息

  • 1. 天津理工大学电气电子工程学院 天津 300384
  • 2. 中国能源建设集团天津电力设计院有限公司 天津 300180
  • 3. 天津理工大学计算机视觉与系统教育部重点实验室 天津 300384
  • 折叠

摘要

Abstract

A lightweight convolution neural network(LightweightES)for edge computing equipment is proposed to identify electrical equipment and their abnormal heating faults in thermal images.In order to reduce the number of model parameters and improve detection accuracy,the classical SSD was modified as follows.MobileNetV3 lightweight network was used as the backbone network of feature extraction to extract image features efficiently.The efficient channel attention module(ECA)was introduced to improve the detection accuracy of the network.The SoftPool method was used to reduce the loss of the pooling information and improve the classification accuracy.A data set of 10516 labeled infrared images of electrical equipment was established including 6 types of outdoor substation equipment,such as current transformers,arresters,insulators,disconnectors,circuit breakers and drivepipes.The experimental results show that the mAP of LightweightES algorithm reaches 93.8%,which is 7.5 percentage points higher than SSD.The number of parameters is only 1/5 of SSD,while the detection frame rate is up to 55 FPS,which can accurately identify the electrical equipment and local temperature abnormal faults in real time.It is suitable for intelligent field monitoring terminal with limited computing power.

关键词

电气设备红外图像/目标检测/轻量级网络/通道注意/池化

Key words

Infrared image of electrical equipment/Target detection/Lightweight network/Channel attention/Pooling

分类

信息技术与安全科学

引用本文复制引用

张惊雷,李婉欣,赵俊亚,温显斌..轻量级网络识别红外图像中电气设备及其热故障[J].计算机应用与软件,2024,41(12):43-48,76,7.

基金项目

国家自然科学基金项目(61472278). (61472278)

计算机应用与软件

OA北大核心CSTPCD

1000-386X

访问量0
|
下载量0
段落导航相关论文