| 注册
首页|期刊导航|计算机应用与软件|多特征融合的YOLOv4-tiny带钢表面缺陷检测方法研究

多特征融合的YOLOv4-tiny带钢表面缺陷检测方法研究

李锦达 汤勃 孙伟 孔建益 林中康

计算机应用与软件2024,Vol.41Issue(12):208-213,254,7.
计算机应用与软件2024,Vol.41Issue(12):208-213,254,7.DOI:10.3969/j.issn.1000-386x.2024.12.030

多特征融合的YOLOv4-tiny带钢表面缺陷检测方法研究

STUDY ON SURFACE DEFECT DETECTION METHOD OF YOLOV4-TINY STRIP BY MULTI-FEATURE FUSION

李锦达 1汤勃 1孙伟 1孔建益 1林中康1

作者信息

  • 1. 武汉科技大学机械自动化学院 湖北 武汉 430081
  • 折叠

摘要

Abstract

Automatic identification of small surface defects is one of the difficulties in strip production.In order to improve the accuracy of surface defect detection of strip steel,a multi-feature fusion YOLOv4-tiny deep learning method is proposed.The Inception structure and multi-scale information were introduced.The orientation gradient histogram feature(HOG)of the original image was extracted and fused with the high-level features extracted from the backbone network as the input of the feature pyramid structure.The experimental results show that the mAP of surface defects of strip steel in the test concentration is 93.99%,which is 13.57 percentage points higher than that of the YOLOv4-tiny network.The number of network parameters was reduced by about 210 000 compared with that of the YOLOv4-tiny network,and the network detection accuracy is greatly improved.

关键词

带钢/表面缺陷检测/特征融合/YOLOv4-tiny/深度学习

Key words

Strip steel/Surface defect detection/Feature fusion/YOLOv4-tiny/Deep learning

分类

信息技术与安全科学

引用本文复制引用

李锦达,汤勃,孙伟,孔建益,林中康..多特征融合的YOLOv4-tiny带钢表面缺陷检测方法研究[J].计算机应用与软件,2024,41(12):208-213,254,7.

基金项目

国家自然科学基金项目(51874217). (51874217)

计算机应用与软件

OA北大核心CSTPCD

1000-386X

访问量0
|
下载量0
段落导航相关论文