太赫兹融合光谱结合改进Fused Lasso模型在转基因菜籽油鉴别中的应用OA北大核心CSTPCD
Application of terahertz fusion spectrum combined with improved fused lasso model in identification of transgenic rapeseed oil
现有基于单一光谱的转基因菜籽油分类鉴别模型,存在包含信息少、数据维度高等问题,导致模型运行效率较低、检测结果不够准确.针对此问题,本研究提出一种太赫兹融合光谱结合改进Fused Lasso模型的转基因菜籽油分类鉴别方法.以两种转基因菜籽油和两种非转基因菜籽油为研究对象,应用太赫兹时域光谱(THz-TDS)系统获取4种菜籽油样品在0.2~1.6 THz频率范围内的太赫兹吸收光谱,采用连续投影(SPA)算法对样品的太赫兹吸收光谱和导数光谱进行特征提取后再融合,引入特征选择和分类为一体的正则化稀疏模型Fused Lasso,通过采用一对一(OVO)方法将其改进为多分类模型并采用贝叶斯优化(BO)算法对其正则化参数寻优.结果表明,相比传统基于单一吸收光谱的Fused Lasso模型,基于融合光谱的BO-Fused Lasso模型对4种菜籽油分类效果更好,其训练集准确率为96.88%,测试集准确率为95.00%.因此,本研究为转基因菜籽油和非转基因菜籽油的鉴别提供了一种新方法,也为其他转基因物质鉴别提供了有价值的参考.
Existing classification and identification models for transgenic rapeseed oil based on single-spec-trum analysis suffer from limited information and high data dimensionality,leading to low operational effi-ciency and inaccurate detection results.To address these issues,a novel classification method for transgen-ic rapeseed oil was proposed,leveraging terahertz fusion spectroscopy combined with an improved Fused Lasso model.Using two types of transgenic rapeseed oil and two types of non-transgenic rapeseed oil as research subjects,the terahertz time-domain spectroscopy(THz-TDS)system was employed to obtain the terahertz absorption spectra of the four rapeseed oil samples in the frequency range of 0.2 to 1.6 THz.Features were extracted from the absorption and derivative spectra using the successive projections algo-rithm(SPA),and then fused.Introducing a regularization sparse model,Fused Lasso,which integrates feature selection and classification.This model was improved into a multi-class model using the one-vs-one(OVO)method,and Bayesian optimization(BO)was employed to optimize its regularization parame-ters.The results demonstrated that the BO-Fused Lasso model,based on fusion spectra,significantly out-performed the traditional Fused Lasso model based on a single absorption spectrum in classifying the four types of rapeseed oil.The accuracy rates for the training and testing sets were 96.88%and 95.00%,re-spectively.This study,therefore,presents a novel approach for accurately identifying transgenic and non-transgenic rapeseed oils and provides a valuable reference for the detection of other transgenic substances.
陈涛;谢光翀;张绍荣
桂林电子科技大学 电子工程与自动化学院,广西 桂林 541004桂林电子科技大学 电子工程与自动化学院,广西 桂林 541004||桂林航天工业学院 电子信息与自动化学院,广西 桂林 541004
物理学
太赫兹转基因菜籽油融合光谱正则化稀疏模型贝叶斯优化
terahertztransgenic rapeseed oilfusion spectrumregularized sparse modelBayesian opti-mization
《光学精密工程》 2024 (020)
3006-3016 / 11
国家自然科学基金资助项目(No.62261012,No.61841502)
评论