变分近似解算KL散度红外可见光遥感图像配准OA北大核心CSTPCD
Infrared-visible remote sensing image registration method based on Kullback-Leibler divergence using variational approximation
为解决基于传统的距离相似性度量函数在异源遥感图像配准任务中抗噪性能差的问题,提出基于变分近似解算KL散度的红外/可见光遥感图像配准方法.首先,对红外实时图像和可见光基准图像分别提取边缘特征,得到异源图像共性特征;然后,利用成像位姿信息对红外图像边缘特征点集进行正射校正,并对红外/可见光图像特征点集分别构建高斯混合模型;接着,将两个高斯混合模型之间的KL(Kullback-Leibler)散度值作为图像相似性度量函数,并引入带约束的变分参量,利用拉格朗日乘数法解算出变分参量,实现近似求解KL散度值的目标;最后,采用粒子群优化算法搜索最佳配准参数,实现图像配准.在遥感图像对比实验结果中,本文方法的配准参数均方根误差平均值为2.5,平均运行时间为1.5 s;在高斯噪声方差和椒盐噪声系数为0.07时,仍能实现正确配准.表明本文方法具有较强的鲁棒性和运算效率.
To solve the problem of poor robustness of distance-based metrics in multi-sensor remote sens-ing image registration methods,an image registration algorithm based on Kullback-Leibler divergence us-ing variational approximation was proposed.First,edge features were extracted from the infrared image and visible image,respectively.Second,the infrared image features were orthorectified using imaging pos-es,and Gaussian Mixture Models(GMMs)were constructed for the feature point sets of the infrared and visible images,respectively.Third,the Kullback-Leibler divergence between the two GMMs was calcu-lated using the variational approximation method,in which variational parameters were introduced and the Lagrange multiplier was utilized.Finally,the Particle Swarm Optimization(PSO)algorithm was applied to search for the optimal registration parameters.In the remote sensing image registration experiments,the proposed method's average Root Mean Square Error of registration parameters is 2.5,and the aver-age runtime is 1.5 seconds.Additionally,the proposed method still achieves correct registration when the variance of Gaussian noise and the salt-and-pepper noise coefficient is 0.07,respectively.These results validate the robustness and high computational efficiency of our method.
王佳;吴昊;傅瑞罡;孔玲爽;左毅
长沙学院 电子信息与电气工程学院,湖南 长沙 410022合肥综合性国家科学中心 数据空间研究院,安徽 合肥 230000国防科技大学 电子科学学院,湖南 长沙 410073
计算机与自动化
变分近似法KL散度图像配准遥感图像
variational approximationkullback-leibler divergenceimage registrationremote sensing
《光学精密工程》 2024 (020)
3071-3084 / 14
国家自然科学基金项目(No.62201092);湖南省自然科学基金(No.2023JJ30085);湖南省教育厅基金(No.22A0599);
评论