| 注册
首页|期刊导航|计算机应用与软件|基于局部相对密度的离群点检测算法

基于局部相对密度的离群点检测算法

何旭 邓安生 葛小龙

计算机应用与软件2024,Vol.41Issue(12):296-302,7.
计算机应用与软件2024,Vol.41Issue(12):296-302,7.DOI:10.3969/j.issn.1000-386x.2024.12.042

基于局部相对密度的离群点检测算法

A LOCAL RELATIVE DENSITY-BASED APPROACH FOR OUTLIER DETECTION

何旭 1邓安生 1葛小龙1

作者信息

  • 1. 大连海事大学 辽宁 大连 116026
  • 折叠

摘要

Abstract

The proportion of outliers in the data set is very small,but the existing methods have to calculate the outliers of all the data during the outlier detection.To solve this problem,a normal data elimination algorithm based on MNN clustering(EMNC)is proposed,which preprocesses the data to eliminate normal points to the greatest extent.The density outlier detection algorithm that only considers k nearest neighbors cannot well adapt to outliers with abnormal data distribution.This algorithm made full use of the distribution of objects and their neighbors,and meanwhile considers k nearest neighbors,inverse nearest neighbors and shared nearest neighbors to estimate the density.A local relative density-based outlier factor(ROF)was redefined to evaluate the rest outlier of doubtful points.The ROF algorithm not only reduced the amount of data needed to calculate the local outlier,but also improved the detection efficiency.Experimental results on synthetic and real datasets show the effectiveness of the ROF algorithm compared with other methods.

关键词

离群点检测/局部相对密度/互近邻聚类/共享近邻

Key words

Outlier detection/Local relative density/MNN clustering/Shared nearest neighbors

分类

信息技术与安全科学

引用本文复制引用

何旭,邓安生,葛小龙..基于局部相对密度的离群点检测算法[J].计算机应用与软件,2024,41(12):296-302,7.

计算机应用与软件

OA北大核心CSTPCD

1000-386X

访问量0
|
下载量0
段落导航相关论文