首页|期刊导航|农机化研究|农田作业车的RBF-PID横向路径跟踪控制研究

农田作业车的RBF-PID横向路径跟踪控制研究OA北大核心

RBF-PID Lateral Path Tracking Control of Farm Work Vehicle

中文摘要英文摘要

针对农业现代化背景下大块农田环境的农用车辆路径跟踪作业的需求,采用RBF神经网络自整定PID控制参数的方法优化传统的基于增量式PID的车辆横向路径跟踪算法,建立 3-6-1 结构的RBF神经网络,以目标路径位置、实际行驶位置和上一周期方向盘转角为输入量,隐藏层设置 6 个神经元,输出量为方向盘转角,通过梯度下降法对PID的参数实时调整.最后,利用CarSim/Simulink对基于约翰迪尔 825i Gator车型改造的农田取土采样车进行建模和仿真,结果表明:在低速(10 km/h)的U形(蛇形)路径下,平均误差为3.89 cm,最大误差为16.61 cm,标准差为5.99 cm,跟踪效果优于传统增量式PID控制,鲁棒性良好,能满足常见的农田作业车辆路径跟踪工况的作业需求.

In response to the demand for path tracking of agricultural vehicles in large agricultural environments under the background of agricultural modernization,the traditional vehicle lateral path tracking algorithm based on incremental PID was optimized using RBF neural network self-tuning PID control parameters.A 3-6-1 structure RBF neural network was established,with target path position,actual driving position,and previous cycle steering wheel angle as input variables,and 6 neurons were set in the hidden layer.The output was the steering wheel angle,and the PID parameters were adjus-ted in real-time using the gradient descent method.Finally,CarSim/Simulink was used to model and simulate a farmland soil sampling vehicle modified from the John Deere 825i Gator model.Under a low speed(10 km/h)U-shaped(serpen-tine)path,the average error was 3.89 cm,the maximum error was 16.61 cm,and the standard deviation was 5.99 cm.The tracking effect was superior to traditional incremental PID control,with good robustness,and can meet the operational requirements of common agricultural vehicle path tracking conditions.

项波瑞;赵祚喜;廖志辉;米亚龙;张清河

华南农业大学 工程学院,广州 510642||华南农业大学 车辆导航与控制实验室,广州 510642华南农业大学 工程学院,广州 510642||华南农业大学 车辆导航与控制实验室,广州 510642华南农业大学 工程学院,广州 510642||华南农业大学 车辆导航与控制实验室,广州 510642华南农业大学 工程学院,广州 510642||华南农业大学 车辆导航与控制实验室,广州 510642华南农业大学 工程学院,广州 510642||华南农业大学 车辆导航与控制实验室,广州 510642

农业工程

农田作业车横向路径跟踪RBF-PIDCarSim/Simulink

farm work vehiclelateral path trackingRBF-PIDCarSim/Simulink

《农机化研究》 2025 (4)

42-49,8

广东省农业厅畜牧机器人现代农业创新团队计划项目(2019KJ129)2020 年广东省乡村振兴战略专项(200-2018-XMZC-0001-107-0130)

10.13427/j.issn.1003-188X.2025.04.006

评论