基于改进BP神经网络的烟草收获机械故障诊断研究OA北大核心
Research on Fault Diagnosis of Tobacco Harvesting Machinery Based on Improved BP Neural Network
烟草收获机械是烟草生产中的重要技术支撑,是提高收获效率的重要保证,但由于烟草收获机械内部结构较为复杂,在使用过程中极易造成机械运行故障.随着大数据及传感器技术的快速发展,基于人工神经网络模型实现机械故障的预测与诊断成为提高烟草收获机械工作效率的重要技术.目前,主要以BP神经网络模型应用较为广泛,但在模型构建中预测效率低、鲁棒性强.针对以上问题,提出一种改进BP神经网络模型,以烟草收获机械中的齿轮故障诊断为研究对象,构建基于GA-BP神经网络模型的烟草收获机械齿轮故障诊断模型,并通过选取齿轮磨损、胶合、裂纹、断齿和正常齿轮的信号进行试验验证.结果表明:改进后的BP 神经网络模型MAPE仅为 0.87%,RMSE为 1.12,MAE为 0.92,MSE为 1.19,满足烟草收获生产的实际需要,在模型算法与计算速度方面都得到了很大的提高.
Tobacco harvesting machinery is an important technical support in tobacco production and an important guaran-tee to improve the efficiency of tobacco harvesting,but due to the complex internal structure of tobacco harvesting machinery,it is very easy to cause mechanical operation failure in the process of use.With the rapid development of big data and sensor technology,the prediction and diagnosis of mechanical failure based on artificial neural network model is an important technology to improve the efficient operation of tobacco harvesting machinery.This study proposed an im-proved BP neural network model,and constructed a gear fault diagnosis model based on GA-BP neural network model for tobacco harvesting machinery,and conducted experimental verification by selecting signals of gear wear,gluing,cracking,broken teeth and normal gears.The results showed that the improved BP neural network model has MAPE of on-ly 0.87%,RMSE of 1.12,MAE of 0.92,MSE of 1.19,this fault diagnosis accuracy meets the actual needs of tobacco harvesting production and has been greatly improved in terms of model algorithm and computation speed.
戴欧阳;胡洪林
桂林信息科技学院,广西 桂林 541000
农业工程
烟草收获机械故障遗传算法BP神经网络优化模型
tobacco harvestingmechanical failuregenetic algorithmBP neural networkoptimization model
《农机化研究》 2025 (004)
70-76 / 7
广西高校中青年教师科研基础能力提升项目(2021KY1636)
评论