| 注册
首页|期刊导航|南京邮电大学学报(自然科学版)|CGAC:一种基于CSI的人体动作识别方法

CGAC:一种基于CSI的人体动作识别方法

苏健 郑毓煌 陈思光

南京邮电大学学报(自然科学版)2024,Vol.44Issue(6):12-24,13.
南京邮电大学学报(自然科学版)2024,Vol.44Issue(6):12-24,13.DOI:10.14132/j.cnki.1673-5439.2024.06.002

CGAC:一种基于CSI的人体动作识别方法

CGAC:a CSI-based human activity recognition method

苏健 1郑毓煌 1陈思光2

作者信息

  • 1. 南京信息工程大学软件学院,江苏南京 210044
  • 2. 南京邮电大学物联网学院,江苏南京 210003
  • 折叠

摘要

Abstract

Channel state information(CSI)of WiFi has a wide range of applications in the field of human action recognition(HAR).Most methods of CSI-based HAR are deficient in accuracy and lack robustness in different environments.To address these issues,this paper proposes a composite human action recognition model(CGAC)that combines convolutional neural networks(CNNs),gated recurrent units,and attention mechanisms.First,temporal features are extracted from the input data using CNNs.Second,the feature size is reduced by the pooling operation.Third,the temporal features are modeled by using BiGRU.Thus,the attention to the key features is enhanced by the attention mechanism.Experiments are conducted on three public datasets,and the results show that CGAC obtains a higher accuracy than that of any other existing methods:99.70%accuracy on the UT-HAR dataset,97.50%on the HAR dataset of NTU-Fi,and 97.81%on the Human-ID dataset,validating its effectiveness.

关键词

人体动作识别/信道状态信息/深度学习/卷积神经网络/门控循环单元/注意力机制

Key words

human activity recognition(HAR)/channel state information(CSI)/deep learning/convolutional neural network(CNN)/gate recurrent unit(GRU)/attention mechanism

分类

信息技术与安全科学

引用本文复制引用

苏健,郑毓煌,陈思光..CGAC:一种基于CSI的人体动作识别方法[J].南京邮电大学学报(自然科学版),2024,44(6):12-24,13.

基金项目

国家自然科学基金(61802196)资助项目 (61802196)

南京邮电大学学报(自然科学版)

OA北大核心CSTPCD

1673-5439

访问量0
|
下载量0
段落导航相关论文