| 注册
首页|期刊导航|南京邮电大学学报(自然科学版)|联邦学习中防御投毒攻击的客户端筛选策略

联邦学习中防御投毒攻击的客户端筛选策略

徐鹤 张迪 李鹏 季一木

南京邮电大学学报(自然科学版)2024,Vol.44Issue(6):53-64,12.
南京邮电大学学报(自然科学版)2024,Vol.44Issue(6):53-64,12.DOI:10.14132/j.cnki.1673-5439.2024.06.006

联邦学习中防御投毒攻击的客户端筛选策略

A client selection strategy for defending against poisoning attacks in federated learning

徐鹤 1张迪 2李鹏 1季一木3

作者信息

  • 1. 南京邮电大学计算机学院,江苏南京 210023||南京邮电大学网络安全与可信计算研究所,江苏南京 210023
  • 2. 南京邮电大学计算机学院,江苏南京 210023
  • 3. 南京邮电大学计算机学院,江苏南京 210023||江苏省高性能计算与智能处理工程研究中心,江苏南京 210023
  • 折叠

摘要

Abstract

Federated learning is a method to address data silos.However,as adversarial models evolve,adversaries may inject harmful parameters during the training process,leading to a decrease in the models'training effectiveness.To enhance the security of the training process of federated learning,a client selection strategy for defending against poisoning attacks in federated learning is designed.In this strategy,a scoring function based on the differential privacy exponential mechanism is used to dynamically update weight parameters.First,consistent weight parameters are assigned to each client.Second,the effectiveness of each round of training is quantified and the quantified results are input into a constructed update function.Third,the server selects suitable clients for participating the current round of training based on these updated weight parameters,and aggregates the training models uploaded by these clients.The entire process is repeated over multiple rounds,until an effective and reliable training model is abtained.Finally,the feasibility of the proposed strategy is experimentally validated for adversarial poisoning attacks.

关键词

联邦学习/投毒攻击/差分隐私/指数机制

Key words

federated learning/poisoning attacks/differential privacy/exponential mechanisms

分类

信息技术与安全科学

引用本文复制引用

徐鹤,张迪,李鹏,季一木..联邦学习中防御投毒攻击的客户端筛选策略[J].南京邮电大学学报(自然科学版),2024,44(6):53-64,12.

基金项目

国家自然科学基金(62102196)、江苏省重点研发计划(BE2019740)、江苏省教育厅高等学校自然科学研究项目(20KJA520001)和江苏省六大人才高峰高层次人才项目(RJFW-111)资助项目 (62102196)

南京邮电大学学报(自然科学版)

OA北大核心CSTPCD

1673-5439

访问量0
|
下载量0
段落导航相关论文