热带气象学报2024,Vol.40Issue(5):736-744,9.DOI:10.16032/j.issn.1004-4965.2024.065
基于融合TC-WREM模型的热带气旋大风半径估算研究
Research on the Estimation of Tropical Cyclone Gale Radius Based on a Fusion TC-WREM Model
摘要
Abstract
In this paper,a fusion TC Wind Radii Estimation Model(TC-WREM)that combines a Multi-Layer Perceptron net(MLP)and a Convolutional Neural Network(CNN)is established by using the Tropical Cyclone(TC)best track data set and the static satellite cloud images.This model utilizes MLP and CNN to pre-extract the core features associated with TC wind radius from TC attribute data and satellite cloud images and ultimately performs gale wind radius estimation.The fused TC-WREM model in this study can achieve deep and objective mining of TC attribute data and underlying features of satellite cloud images,whose estimation error is reduced by about 7%-24%compared to individual MLP and CNN models.Taking the estimation of 17.2 m·s-1 wind radius of TC In-fa in 2021 as an example,the fused TC-WREM model has higher estimation accuracy than the independent MLP and CNN model.Independent sample testing shows that the mean absolute estimation error in 4 quadrants is 39,33,40,and 51 km,respectively,with an average of 41 km,respectively,which is superior to that of other similar research.The fused TC-WREM model is advantageous due to its utilization of easily obtainable TC attribute information and geostationary meteorological satellite cloud images as inputs.This makes it suitable for operational use and addresses the current lack of domestic TC gale radius estimation models.关键词
热带气旋/大风半径估算/卷积神经网络模型/多层感知器神经网络模型/融合TC-WREM模型/西北太平洋Key words
tropical cyclone/wind radius estimation/Convolutional Neural Network/multi-layer perceptron net/fusion TC-WREM model/western North Pacific分类
天文与地球科学引用本文复制引用
周必高,鲁小琴,吴贤笃,仇欣,谢海华,朱忠勇,郑建琴..基于融合TC-WREM模型的热带气旋大风半径估算研究[J].热带气象学报,2024,40(5):736-744,9.基金项目
温州市科技局基础公益科研项目(S2023012) (S2023012)
南京大学中尺度灾害性天气教育部重点实验室基金(LMSWE-2201) (LMSWE-2201)
上海市2021年度"科技创新行动计划"自然科学基金项目(21ZR1477300) (21ZR1477300)
福建省灾害天气重点实验室2023开放基金项目共同资助 ()