| 注册
首页|期刊导航|水力发电|基于NRBO-SVM模型的月径流预测研究

基于NRBO-SVM模型的月径流预测研究

黎宇杰 史国勇 廖毅 李基栋 陈学毅 黄炜斌

水力发电2025,Vol.51Issue(1):16-21,6.
水力发电2025,Vol.51Issue(1):16-21,6.

基于NRBO-SVM模型的月径流预测研究

Research on Monthly Runoff Prediction Based on NRBO-SVM Model

黎宇杰 1史国勇 2廖毅 1李基栋 2陈学毅 3黄炜斌4

作者信息

  • 1. 国家能源集团四川发电有限公司南桠河水电分公司,四川 雅安 625400
  • 2. 四川农业大学水利水电学院,四川 雅安 625014
  • 3. 成都动能科技有限公司,四川 成都 610041
  • 4. 四川大学水利水电学院,四川 成都 610065
  • 折叠

摘要

Abstract

Based on the multi-year monthly runoff data from the Yeller Station,the methods to improve the accuracy of monthly runoff prediction are explored in terms of model inputs,model optimization and outputs,using the support vector machine(SVM)as a predictor.Firstly,the performance of Newton-Raphson optimization algorithm(NRBO)and Gray Wolf Optimization(GWO)algorithm in parameter optimization is compared,and it is found that NRBO performs better when the mean square error(MSE)is used as the fitness function.Further comparing the efficacy of time series forecasting with split-month forecasting,the results show that time series forecasting has higher forecasting accuracy.In addition,based on above forecasting results,this study also explores the effect of combining the forecasting outputs,which is found to be effective in improving the generalization performance of the model.In the data preprocessing session,preprocessing by variational modal decomposition(VMD)can significantly reduce the difficulty of model prediction while significantly improving the prediction accuracy.Specifically,GWO-VMD-NRBO-SVM reduces the mean absolute percentage error(MAPE)and normalized root-mean-square error(NRMSE)by more than 68%and 79%,respectively,and improves the Nash efficiency coefficient(NSE)by more than 15%compared to a single model.The results of this paper are informative for non-stationary monthly runoff prediction.

关键词

月径流预测/支持向量机/参数优化/变分模态分解

Key words

monthly runoff prediction/support vector machine/parameter optimization/variational modal decomposition

分类

地球科学

引用本文复制引用

黎宇杰,史国勇,廖毅,李基栋,陈学毅,黄炜斌..基于NRBO-SVM模型的月径流预测研究[J].水力发电,2025,51(1):16-21,6.

基金项目

四川省科技厅应用基础研究项目(2021YJ0544) (2021YJ0544)

水力发电

0559-9342

访问量0
|
下载量0
段落导航相关论文