| 注册
首页|期刊导航|物联网学报|物联网中模型剪枝技术:现状、方法和展望

物联网中模型剪枝技术:现状、方法和展望

赵军辉 李怀城 王东明 李佳珉 周一青 束锋

物联网学报2024,Vol.8Issue(4):1-13,13.
物联网学报2024,Vol.8Issue(4):1-13,13.DOI:10.11959/j.issn.2096-3750.2024.00448

物联网中模型剪枝技术:现状、方法和展望

Model pruning techniques in the Internet of things:state of the art,methods and perspectives

赵军辉 1李怀城 1王东明 2李佳珉 2周一青 3束锋4

作者信息

  • 1. 北京交通大学电子信息工程学院,北京 100044
  • 2. 东南大学信息科学与工程学院,江苏 南京 211189
  • 3. 中国科学院计算技术研究所,北京 100190
  • 4. 海南大学信息与通信工程学院,海南 海口 570228
  • 折叠

摘要

Abstract

In the context of the rapid development of Internet of things(IoT)technology,IoT devices faced challenges in running complex artificial intelligence(AI)algorithms,especially deep learning models,due to the limitations of comput-ing power,storage space,communication bandwidth,and battery life.Model pruning technology could effectively reduce computation and storage requirements by reducing redundant parameters in neural networks without impairing the perfor-mance of AI models.This technique was extremely suitable for optimising AI models deployed on IoT devices.Firstly,two typical model pruning techniques-structured pruning and unstructured pruning,which were currently popular and suit-able for different application scenarios,were reviewed.Secondly,the diverse applications of these methods in IoT envi-ronments were analysed in detail.Finally,the limitations of the current model pruning were discussed in detail in the light of the latest research results,and the future development direction of model pruning methods in IoT was outlooked.

关键词

物联网/资源限制/模型剪枝/人工智能/深度学习

Key words

IoT/resource constraints/model pruning/AI/deep learning

分类

信息技术与安全科学

引用本文复制引用

赵军辉,李怀城,王东明,李佳珉,周一青,束锋..物联网中模型剪枝技术:现状、方法和展望[J].物联网学报,2024,8(4):1-13,13.

基金项目

国家自然科学基金资助项目(No.U2001213) (No.U2001213)

国家重点研发计划(No.2020YFB1807204)The National Natural Science Foundation of China(No.U2001213),The National Key Research and Develop-ment Program of China(No.2020YFB1807204) (No.2020YFB1807204)

物联网学报

OACSTPCD

2096-3750

访问量6
|
下载量0
段落导航相关论文