首页|期刊导航|中国舰船研究|联合小波阈值和F-NLM去噪的高分辨率SAR舰船检测方法

联合小波阈值和F-NLM去噪的高分辨率SAR舰船检测方法OA北大核心CSTPCD

Method of joint wavelet thresholding and F-NLM de-noising for high-resolution SAR ship detection

中文摘要英文摘要

[目的]针对高分辨率合成孔径雷达(SAR)舰船目标多场景、多尺度、密集排布的显著特征,以及成像过程中相干噪声导致目标边缘细节模糊的问题,提出一种融合小波阈值和快速非局部均值滤波(F-NLM)去噪的高分辨率SAR舰船检测方法.[方法]首先,利用小波阈值与F-NLM融合去噪模块预处理SAR图像,来降低海杂波噪声及增强检测目标细节特征和边缘信息,使提取的特征更具判别性.然后,选用YOLOv7 检测算法结合双向特征金字塔网络来对多尺度特征有效聚合,以进一步提高模型准确率.[结果]实验结果显示,使用去噪数据集D-SSDD得到的检测平均准确度可达 98.69%,虚警率降低至 2.37%.[结论]研究表明,所提方法不仅能均匀背景杂波以提高图像质量,还能提高多尺度特征信息的交互性,保证目标检测精度和准确度.

[Objective]Aiming at the significant features of high-resolution synthetic aperture radar(SAR)ship targets with multiple scenes,multi-scale and dense arrangements,and the problem of the blurring of tar-get edge details due to coherent noise in the imaging process,a high-resolution SAR ship detection method is proposed with joint wavelet thresholding and fast non-local mean(F-NLM)de-noising.[Methods]First,wavelet thresholding and F-NLM de-noising modules are utilized to preprocess the SAR image and reduce the sea clutter noise,enhance the detailed features and edge information of the detection target,and make the ex-tracted features more discriminative.Next,a YOLOv7 detection algorithm combined with a bi-directional fea-ture pyramid network(Bi-FPN)is selected to effectively aggregate the multi-scale features and further im-prove the model's accuracy.[Results]The experimental results show that the average precision of ship de-tection using the de-noised dataset D-SSDD can reach 98.69%and the false alarm rate is reduced to 2.37%.[Conclusions]It is clear that the proposed high-resolution SAR ship detection method not only homogen-izes the background clutter to improve the image quality,but also improves the interactivity of multi-scale fea-ture information to ensure precise and accurate target detection.

童亮;刘丹;彭中波;邹涵;王露萌;张春玉

重庆交通大学 航运与船舶工程学院,重庆 400074重庆交通大学 航运与船舶工程学院,重庆 400074重庆交通大学 航运与船舶工程学院,重庆 400074重庆交通大学 航运与船舶工程学院,重庆 400074重庆交通大学 航运与船舶工程学院,重庆 400074重庆交通大学 航运与船舶工程学院,重庆 400074

交通运输

雷达目标识别图像处理SAR舰船检测小波变换小波阈值快速非局部均值滤波双向特征金字塔网络(Bi-FPN)YOLOv7

radar target recognitionimage processingSAR ship detectionwavelet transformswavelet thresholdfast non-local mean(F-NLM)bi-directional feature pyramid network(Bi-FPN)YOLOv7

《中国舰船研究》 2024 (6)

275-283,9

重庆市科学技术委员会资助项目(2022TIAD-GPX0018)重庆交通大学研究生科研创新资助项目(2023S0076)

10.19693/j.issn.1673-3185.03477

评论