融合语义分割与模糊推理的无人机应急降落选址算法OA北大核心
随着无人机的应用领域从娱乐摄影拓展到物流、军事和灾害响应,对于无人机的自主智能化要求也越来越高。针对无人机紧急情况下自主降落区域复杂难以保证着陆安全的问题,提出了一种实时语义分割网络与模糊推理相结合的降落选址算法(STDC-LSSNet)。考虑到潜在危险因素在航拍图像上占比小、易被错误分割的问题,提出了小目标特征提取模块(small target feature capture module,STFCM),通过计算不同尺度特征的相似性并进行权重分配,强化小目标特征的表达。考虑到安全区域与危险区域边界混淆会导致无人机降落存在巨大风险,提出了边界特征融合模块(boundary feature fusion module,BFFM),将浅层网络由拉普拉斯卷积得到的边界信息与深层网络的语义信息进行特征融合,引入注意力机制,增强边界区域特征的表达。通过对分割得到的图像进行模糊推理,从而精确识别应急降落地点。所提算法在公开数据集Semantic Drone和AeroScapes上与最先进的算法进行了广泛的对比实验,mIoU提升1.72个百分点和3.89个百分点,实时分割速度达到210 FPS,选址的速度达到58.62 ms,实现了无人机在复杂情况下的应急降落选址。
李迪;肖敏;任东;谢咏昶;姚远;
三峡大学计算机与信息学院,湖北宜昌443002 三峡大学湖北省农田环境监测工程技术研究中心,湖北宜昌443002
计算机与自动化
无人机自主降落实时语义分割模糊推理注意力机制
《计算机工程与应用》 2025 (001)
P.174-185 / 12
国家重点研发计划(2016YFD0800902);湖北省重大技术创新项目(2017ABA157);湖北省教育厅科技研究计划优秀中青年人才项目(Q20201206);湖北省农田环境监测工程技术研究中心开放基金(201613);111引智项目(D20015)。
评论