| 注册
首页|期刊导航|船电技术|基于IPSO-BP神经网络算法的微高压氧舱氧气浓度控制研究

基于IPSO-BP神经网络算法的微高压氧舱氧气浓度控制研究

姬鹏飞 王晓芬 金远远

船电技术2025,Vol.45Issue(1):1-4,4.
船电技术2025,Vol.45Issue(1):1-4,4.

基于IPSO-BP神经网络算法的微高压氧舱氧气浓度控制研究

Research on oxygen concentration control of micro hyperbaric oxygen chamber based on IPSO-BP neural network algorithm

姬鹏飞 1王晓芬 1金远远1

作者信息

  • 1. 安阳工学院电子信息与电气工程学院,河南 安阳 455000
  • 折叠

摘要

Abstract

In response to the poor control effect and low automation level of oxygen concentration in micro hyperbaric oxygen chambers,this article analyzes the working principle of the oxygen supply system in micro hyperbaric oxygen chambers,models the process of oxygen concentration control in the chamber,and uses IPSO-BP neural network PID control algorithm to optimize the control of oxygen concentration.The simulation results show that compared with BP neural network PID algorithm and PSO-BP neural network PID algorithm,IPSO-BP neural network PID algorithm effectively combines the advantages of IPSO global search optimization and BP neural network nonlinear mapping,and has fast and accurate control effect,good anti-interference ability,which has certain practical value.

关键词

IPSO/BP神经网络/氧气浓度控制

Key words

IPSO/BP neural network/oxygen concentration control

分类

计算机与自动化

引用本文复制引用

姬鹏飞,王晓芬,金远远..基于IPSO-BP神经网络算法的微高压氧舱氧气浓度控制研究[J].船电技术,2025,45(1):1-4,4.

基金项目

安阳市重点研发与推广专项项目(2023C01SF125) (2023C01SF125)

船电技术

1003-4862

访问量0
|
下载量0
段落导航相关论文