| 注册
首页|期刊导航|船电技术|基于Attention-LSTM的短期电力负荷预测

基于Attention-LSTM的短期电力负荷预测

李璨 伍黎艳 赵威 李晟 曾加贝 苏旨音 曾进辉

船电技术2025,Vol.45Issue(1):5-8,4.
船电技术2025,Vol.45Issue(1):5-8,4.

基于Attention-LSTM的短期电力负荷预测

Short-term power load forecasting based on Attention-LSTM

李璨 1伍黎艳 1赵威 1李晟 1曾加贝 1苏旨音 2曾进辉2

作者信息

  • 1. 株洲电力勘测设计科研有限公司,湖南 株洲 412000
  • 2. 湖南工业大学电气与信息工程学院,湖南 株洲 412007
  • 折叠

摘要

Abstract

The accuracy of power load forecasting is interfered by many factors,such as climate change,economic development and regional differences,which make the power load present significant instability and complex nonlinear characteristics,thus increasing the difficulty of improving the forecasting accuracy.To address this challenge,this paper innovatively introduces a prediction method that combines self-attention mechanism with Long Short-term Memory Network(LSTM).The experimental results show that the coefficient of determination(R2)of this method is 0.96,the Mean Absolute Error(MAE)is 0.023,and the Root Mean Square Error(RMSE)is 0.029,which significantly improves the accuracy of prediction.This not only proves the effectiveness of the proposed model in improving the accuracy of power load forecasting,but also lays a certain foundation for its application in power load forecasting for ships.

关键词

短期电力负荷预测/长短期记忆网络/自注意力机制/预测精度/模型泛化能力

Key words

short-term power load forecasting/long short-term memory networks/self-attention mechanism/predictive accuracy/model generalisation capabilities

分类

信息技术与安全科学

引用本文复制引用

李璨,伍黎艳,赵威,李晟,曾加贝,苏旨音,曾进辉..基于Attention-LSTM的短期电力负荷预测[J].船电技术,2025,45(1):5-8,4.

基金项目

关于多场景光储充用一体化系统容量优化配置及运行控制策略研究的辅助服务采购 ()

船电技术

1003-4862

访问量0
|
下载量0
段落导航相关论文